山形県土地改良事業
 測量作業規程

令和 3 年 8 月

山形県農林水産部

測量作業規程の目次

第1編 総則（第1条—第16条） 1
第2編 基準点測量 5
第1章 通則 5
第 1 節 要旨（第 17 条•第 18 条） 5
第2節 製品仕様書の記載事項（第19条） 5
第2章 基準点測量 5
第1節 要旨（第 20 条—第 23 条） 5
第2節 作業計画（第24条） 9
第3節 選点（第 25 条—第 29 条） 9
第4節 測量標の設置（第30条一第32条） 9
第 5 節 観測（第 33 条—第 38 条） 10
第 6 節 計算（第 39 条—第 42 条） 18
第7節 品質評価（第 43 条） 23
第8節 成果等の整理（第44条•第45条） 23
第3章 レベル等による水準測量 24
第1節 要旨（第46条—第50条） 24
第2節 作業計画（第51条） 25
第 3 節 選点（第52条—第56条） 25
第4節 測量標の設置（第57条—第59条） 26
第 5 節 観測（第 60 条—第 65 条） 27
第 6 節 計算（第 66 条—第 69 条） 30
第 7 節 品質評価（第70条） 32
第8節 成果等の整理（第71条•第72条） 32
第4章 GNS S測量機による水準測量 32
第1節 要旨（第 73 条一第 76 条） 32
第2節 作業計画（第77条） 34
第3節 選点（第 78 条一第 82 条） 34
第4節 測量標の設置（第83条—第85条） 35
第 5 節 観測（第 86 条—第 91 条） 35
第 6 節 計算（第 92 条一第 95 条） 37
第7節 品質評価（第96条） 40
第8節 成果等の整理（第97条•第98条） 40
第5章 復旧測量（第99条—第102条） 41
第3編 地形測量及び写真測量 44
第1章 通則 44
第1節 要旨（第103条） 44
第2節 製品仕様書の記載事項（第104条•第105条） 44
第3節 測量方法（第106条） 45
第4節 図式（第107条） 45
第2章 現地測量 45
第1節 要旨（第108条—第112条） 45
第2節 作業計画（第113条） 46
第3節 基準点の設置（第114条） 46
第4節 細部測量（第115条） 47
第1款 T S 点の設置（第116条—第119条） 47
第 2 款 地形，地物等の測定（第 120 条—第 123 条） 49
第5節 数値編集（第124条•第125条） 51
第 6 節 補備測量（第126条） 51
第7節 数値地形図データファイルの作成（第127条） 52
第 8 節 品質評価（第128条） 52
第 9 節 成果等の整理（第129条•第130条） 52
第3章 地上レーザ測量 52
第1節 要旨（第131条—第134条） 52
第2節 作業計画（第135条） 53
第 3 節 標定点の設置（第 136 条—第 140 条） 53
第 4 節 地上レーザ観測（第 141 条—第 147 条） 54
第5節 現地調査（第148条—第151条） 56
第 6 節 数値図化（第152条—第159条） 57
第7節 数値編集（第160条•第161条） 58
第 8 節 補測編集（第162条—第164条） 59
第9節 数値地形図データファイルの作成（第165条） 59
第1 0 節 品質評価（第166条） 59
第11節 成果等の整理（第167条•第168条） 59
第4章 車載写真レーザ測量 60
第1節 要旨（第169条—第171条） 60
第2節 作業計画（第172条） 60
第3節 調整点の設置（第173条—第176条） 60
第4節 移動取得及びデータ処理 61
第1款 移動取得（第177条—第183条） 61
第2款 データ処理（第184条—第193条） 64
第5節 数値図化（第194条—第201条） 67
第 6 節 現地補測（第202条—第205条） 69
第 7 節 数値編集（第206条—第208条） 70
第8節 数値地形図データファイルの作成（第209条） 70
第 9 節 品質評価（第210条） 71
第10節 成果等の整理（第211条•第212条） 71
第 5 章 UAV 写真測量 71
第1節 要旨（第213条—第215条） 71
第2節 作業計画（第216条） 72
第3節 標定点の設置（第217条—第222条） 72
第 4 節 撮影（第223条—第232条） 74
第 5 節 空中三角測量（第233条—第237条） 77
第 6 節 現地調査（第238条—第241条） 79
第 7 節 数値図化（第 242 条） 79
第 8 節 数値編集（第243条） 80
第 9 節 補測編集（第244条） 80
第10節 数値地形図データファイルの作成（第245条） 80
第11節 品質評価（第246条） 80
第12節 成果等の整理（第247条•第248条） 80
第6章 空中写真測量 80
第1節 要旨（第249条—第251条） 80
第2節 作業計画（第252条） 81
第3節 標定点の設置（第253条—第256条） 81
第4節 対空標識の設置（第257条—第262条） 82
第5節 撮影 84
第1款 要旨（第263条） 84
第 2 款 機材（第264条—第266条） 84
第3款 撮影（第267条—第274条） 87
第4款 G N S S／I MUデータ処理（第275条—277条） 89
第5款 フィルムの処理（第278条—286条） 90
第 6 款 数値写真の統合処理（第287条•第288条） 93
第 7 款 数値写真の整理（第289条—第291条） 94
第 8 款 品質評価（第292条） 94
第 9 款 成果等の整理（第293条•第294条） 94
第 6 節 同時調整（第295条—第303条） 95
第 7 節 現地調査（第 304 条—第 309 条） 98
第8節 数値図化（第310条—第322条） 99
第 9 節 数値編集（第323条—第328条） 102
第 10 節 補測編集（第329条—第333条） 103
第11節 数値地形図データファイルの作成（第334条） 104
第12節 品質評価（第335条） 104
第13節 成果等の整理（第336条•第337条） 104
第7章 既成図数値化 105
第1節 要旨（第338条—第341条） 105
第2節 作業計画（第342条） 105
第3節 計測用基図作成（第343条•第344条） 105
第 4 節 計測（第 345 条—第348条） 106
第5節 数値編集（第349条—第351条） 107
第6節 数値地形図データファイルの作成（第352条） 108
第 7 節 品質評価（第 353 条） 108
第8節 成果等の整理（第354条•第355条） 108
第8章 修正測量 109
第1節 要旨（第356条—第359条） 109
第2節 作業計画（第360条） 112
第3節 予察（第361条） 112
第4節 修正数値図化 113
第1款 T S 等を用いる修正数値図化（第362条•第363条） 113
第2款 キネマティック法による修正数値図化（第364条•第365条） 113
第3款 R T K 法による修正数値図化（第366条•第367条） 113
第 4 款 ネットワーク型 R T K 法による修正数値図化（第368条•第369条） 113
第5款 地上レーザ測量による修正数値図化（第370条•第371条） 114
第6款 車載写真レーザ測量による修正数値図化（第372条•第373条） 114
第 7 款 UAV写真測量による修正数値図化（第374条•第375条） 114
第8款 空中写真測量による修正数値図化（第376条•第377条） 114
第 9 款 既成図を用いる方法による修正数値図化（第378条—第380条） 115
第1 0 款 他の既成データを用いる方法による修正数値図化（第381条—第383条） 115
第5節 現地調査（第384条） 115
第6節 修正数値編集（第385条—第387条） 116
第7節 数値地形図データファイルの更新（第388条） 116
第 8 節 品質評価（第389条） 116
第 9 節 成果等の整理（第 390 条•第 391 条） 116
第9章 写真地図作成 117
第1節 要旨（第392条—第396条） 117
第2節 作業計画（第397条•第398条） 118
第3節 数値地形モデルの作成（第399条—第404条） 118
第 4 節 正射変換（第405条•第406条） 120
第5節 モザイク（第407条—第409条） 120
第6節 写真地図データファイルの作成（第410条•第411条） 121
第 7 節 品質評価（第412条） 121
第8節 成果等の整理（第413条•第414条） 121
第10章 航空レーザ測量 122
第1節 要旨（第415条—第417条） 122
第2節 作業計画（第418条） 123
第3節 固定局の設置（第419条•第420条） 123
第4節 航空レーザ計測（第421条—第425条） 123
第5節 調整用基準点の設置（第426条•第427条） 126
第6節 三次元計測データの作成（第428条—第435条） 127
第7節 オリジナルデータの作成（第436条•第437条） 129
第8節 グラウンドデータの作成（第438条—第442条） 129
第9節 グリッドデータの作成（第443条—第445条） 132
第1 0 節 等高線データの作成（第446条•第447条） 133
第11節 数値地形図データファイルの作成（第448条） 133
第12節 品質評価（第449条） 134
第13節 成果等の整理（第450条•第451条） 134
第11章 地図編集 134
第1節 要旨（第452条—第456条） 134
第2節 作業計画（第457条） 135
第3節 資料収集及び整理（第458条） 135
第4節 編集原稿データの作成（第459条•第460条） 135
第 5 節 数値編集（第461条—第463条） 135
第6節 数値地形図データファイルの作成（第464条） 136
第 7 節 品質評価（第465条） 136
第8節 成果等の整理（第466条•第467条） 136
第12章 基盤地図情報の作成 136
第 1 節 要旨（第468条） 136
第2節 基盤地図情報の作成方法（第469条） 137
第3節 既存の測量成果等の編集による基盤地図情報の作成（第470条•第471条） 137
第 4 節 作業計画（第472条） 138
第5節 既存の測量成果等の収集及び整理（第473条） 138
第6節 基盤地図情報を含む既存の測量成果等の調整（第474条—第477条） 138
第 7 節 基盤地図情報項目の抽出（第478条） 139
第 8 節 品質評価（第479条） 139
第9節 成果等の整理（第480条•第481条） 139
第4編 三次元点群測量 140
第1章 通則 140
第1節 要旨（第482条） 140
第2節 製品仕様書の記載事項（第483条） 140
第 3 節 測量方法（第 484 条） 140
第2章 地上レーザ点群測量 140
第1節 要旨（第485条•第486条） 140
第2節 作業計画（第487条） 141
第3節 標定点の設置（第488条—第492条） 141
第4節 地上レーザ観測（第493条—第500条） 142
第5節 三次元点群データ編集（第501条—第504条） 143
第6節 三次元点群データファイルの作成（第505条） 144
第 7 節 品質評価（第506条） 144
第8節 成果等の整理（第507条•第508条） 144
第3章 UAV写真点群測量 144
第1節 要旨（第509条•第510条） 144
第2節 作業計画（第511条） 145
第3節 標定点及び検証点の設置（第512条—第516条） 145
第 4 節 撮影（第517条—第525条） 146
第5節 三次元形状復元計算（第526条—第529条） 148
第6節 三次元点群データ編集（第530条—第532条） 150
第7節 三次元点群データファイルの作成（第533条） 150
第8節 品質評価（第534条） 150
第 9 節 成果等の整理（第535条•第536条） 150
第5編 応用測量 152
第1章 通則 152
第1節 要旨（第537条—第543条） 152
第2節 製品仕様書の記載事項（第544 条） 154
第2章 確定測量 155
第1節 要旨（第545条—第549条） 155
第2節 計画（第550条•第551条） 156
第3節 地上法 156
第1款 要旨（第552条•第553条） 156
第2款 作業計画（第554条） 157
第3款 基準点測量（第555条—第559条） 157
第 4 款 一筆地測量（第560条—第562条） 158
第4節 確定図の作成（第563条—第565条） 159
第5節 地積測定（第566条•第567条） 160
第6節 成果等の整理（第568条） 160
第3章 路線測量 162
第1節 要旨（第569条•第570条） 162
第2節 作業計画（第571条） 162
第3節 線形決定（第572条—第574条） 162
第 4 節 中心線測量（第 575 条—第 577 条） 165
第 5 節 仮 B M 設置測量（第578条—第580条） 166
第 6 節 縦断測量（第581条•第582条） 167
第 7 節 横断測量（第583条•第584条） 167
第 8 節 詳細測量（第585条•第586条） 169
第 9 節 用地幅杭設置測量（第587条—第589条） 169
第1 0 節 品質評価（第590条） 170
第11節 成果等の整理（第591条•第592条） 170
第 4 章 河川測量 171
第1節 要旨（第593条•第594条） 171
第2節 作業計画（第595条） 172
第3節 距離標設置測量（第596条•第597条） 172
第4節 水準基標測量（第598条•第599条） 172
第5節 定期縦断測量（第600条•第601条） 172
第 6 節 定期横断測量（第602条•第603条） 173
第 7 節 深浅測量（第604条•第605条） 174
第 8 節 法線測量（第606条•第607条） 175
第 9 節 海浜測量及び汀線測量（第608条•第609条） 175
第1 0 節 品質評価（第610条） 175
第11節 成果等の整理（第611条•第612条） 175
第5章 用地測量 176
第1節 要旨（第613条•第614条） 176
第2節 作業計画（第615条） 177
第3節 資料調査（第616条—第621条） 177
第 4 節 復元測量（第622条•第623条） 177
第5節 境界確認（第624条•第625条） 178
第 6 節 境界測量（第626条—第630条） 178
第 7 節 境界点間測量（第631条•第632条） 180
第 8 節 面積計算（第633条•第634条） 180
第9節 用地実測図データファイルの作成（第635条•第636条） 181
第1 0 節 用地平面図データファイルの作成（第637条•第638条） 181
第11節 品質評価（第639条） 182
第12節 成果等の整理（第640条•第641条） 182
第6章 その他の応用測量 183
第1節 要旨（第642条） 183
第2節 作業計画（第643条） 183
第3節 作業方法（第644条） 183
第4節 作業内容（第645条） 184
第5節 品質評価（第646条） 184
第6節 成果等の整理（第647条•第648条） 184

附則

付録 1 測量機器検定基準
付録2 公共測量における測量機器の現場試験の基準
付録3 測量成果検定基準
付録 4 標準様式
付録5 永久標識の規格及び埋設方法
付録6 計算式集
付録 7 公共測量標準図式
付録8 多言語表記による図式
別表1 測量機器級別性能分類表

第1編 総則

（目的及び適用範囲）
第1条 この作業規程（以下「規程」という。）は，山形県農林水産部が行う測量について， その作業方法等を定めることにより規格を統一するとともに，必要な精度を確保すること等 を目的とする。
2 この規程は，測量法（昭和 24 年法律第 188 号。以下「法」という。）第 33 条第 1 項の規定に基づいて国土交通大臣の承認を得たものであり，山形県農林水産部の行ら測量は，他の特別の定めがある場合を除き，この規程の定めるところによる。

（測量の基準）

第2条この規程を適用して行ら測量において，位置は，特別の事情がある場合を除き，平面直角座標系（平成14年国土交通省告示第9号）に規定する世界測地系に従う直角座標及び測量法施行令（昭和24年政令第322号）第2条第2項に規定する日本水準原点を基準とする高さ（以下「標高」という。）により表示するものとする。

（測量法の遵守等）

第3条 測量計画機関（以下「計画機関」という。）及び測量作業機関（以下「作業機関」とい う。）並びに作業に従事する者（以下「作業者」という。）は，作業の実施に当たり，法を遵守しなければならない。
2 この規程において，使用する用語は，法において使用する用語の例によるものとする。

（関係法令等の遵守等）

第 4 条 機関及び作業機関並びに作業者は，作業の実施に当たり，財産権，労働，安全，交通，土地利用規制，環境保全，個人情報の保護等に関する法令を遵守し，かつ，これらに関する社会的慣行を尊重しなければならない。

（測量の計画）

第5条 計画機関は，測量を実施しようとするときは，目的，地域，作業量，期間，精度，方法等 について適切な計画を策定しなければならない。
2 計画機関は，前項の計画の立案に当たり，当該作業地域における他官公庁及び地方公共団体等他の計画機関の基本測量及び公共測量の実施状況について調査し，利用できる測量成果，測量記録及びその他必要な資料（以下「測量成果等」という。）の活用を図ることにより，測量の重複を避けるよう努めなければならない。
3 計画機関は，得ようとする測量成果の種類，内容，構造，品質等を示す仕様書（以下「製品仕様書」という。）を定めなければならない。
一 製品仕様書は，「地理情報標準プロファイル Japan Profile for Geographic Information Standards（JPGIS）」（以下，「 J P G I S」という。）に準拠するものとす る。
二 製品仕様書による品質評価の位置正確度等については，この規程の各作業工程を適用す

るものとする。ただし，この規程における各作業工程を適用しない場合は，J P G I S に よる品質評価を標準とする。

（測量法に基づく手続き）

第6条 計画機関は，法第39条において読み替えて準用する法第14条第1項，同条第2項（実施の公示），法第21条（永久標識及び一時標識に関する通知）及び法第26条（測量標の使用）並 びに法第30条第1項（測量成果の使用），法第36条（計画書についての助言），法第37条（公共測量の表示等）及び法第 40 条第 1 項（測量成果の提出）等の規定による手続を適切な時期に行わなければならない。

（基盤地図情報）

第 7 条 この規程において「基盤地図情報」とは，地理空間情報活用推進基本法（平成19年法律第 63 号。以下「基本法」という。）第 2 条第 3 項の基盤地図情報に係る項目及び基盤地図情報 が満たすべき基準に関する省令（平成19年国土交通省令第78号。以下「項目及び基準に関す る省令」という。）の規定を満たす位置情報をいう。
2 計画機関は，測量成果である基盤地図情報の整備及び活用に努めるものとする。

（実施体制）

第8条 作業機関は，測量作業を円滑かつ確実に実行するため，適切な実施体制を整えなければな らない。

2 作業機関は，作業計画の立案，工程管理及び精度管理を総括する者として，主任技術者を選任しなければならない。
3 前項の主任技術者は，法第 49 条の規定に従い登録された測量士であり，かつ，高度な技術 と十分な実務経験を有するものでなければならない。
4 作業機関において，技術者として測量に従事する者は，法第49条の規定に従い登録された測量士又は測量士補でなければならない。

（安全の確保）

第9条 作業機関は，特に現地での測量作業において，作業者の安全の確保について適切な措置を講じなければならない。

（作業計画）

第10条 作業機関は，測量作業着手前に，測量作業の方法，使用する主要な機器，要員，日程等に ついて適切な作業計画を立案し，これを計画機関に提出して，その承認を得なければならな い。作業計画を変更しようとするときも同様とする。

（工程管理）

第11条 作業機関は，前条の作業計画に基づき，適切な工程管理を行わなければならない。
2 作業機関は，測量作業の進捗状況を適宜計画機関に報告しなければならない。
（精度管理）
第12条 作業機関は，測量の正確さを確保するため，適切な精度管理を行い，この結果に基づいて品質評価表及び精度管理表を作成し，これを計画機関に提出しなければならない。
2 作業機関は，各工程別作業区分の作業終了後及び適宜作業の途中に，この作業規程に定め る点検を行わなければならない。

3 作業機関は，作業の終了後速やかに点検測量を行わなければならない。二 点検測量率は，次表を標準とする。

測 量 種 別	率			量 種	別		率
1 － 2 級 基 準 点 測 量	10 \％	一	筆	地	測	量	2 \％
3 － 4 級 基 準 点 測 量	5 \％	線	形		決	定	5 \％
レベル等による水準測量		中	心	線	測	量	5%
$1 \sim 4$ 級 水 準 測 量	5 \％	縦	断		測	量	5 \％
簡 易 水 準 測 量	5%	横	断		測	量	5%
G N S S 測量機による水準測量 3 級 水 準 測 量	10 \％						
地形測量及び写真測量	2%						
航空レーザ測量	5%						
三 次 元 点 群 測 量	5%						

（機器の検定等）
第13条 作業機関は，計画機関が指定する機器については，付録 1 に基づく測定値の正当性を保証 する検定を行った機器を使用しなければならない。ただし，1年以内に検定を行った機器標尺については 3 年以内）を使用する場合は，この限りでない。
2 前項の検定は，測量機器の検定に関する技術及び機器等を有する第三者機関によるものと する。ただし，計画機関が作業機関の機器の検査体制を確認し，妥当と認められた場合に は，作業機関は，付録2による国内規格の方式に基づき自ら検査を実施し，その結果を第三者機関による検定に代えることができる。
3 作業者は，観測に使用する主要な機器について，作業前及び作業中に適宜点検を行い，必要な調整をしなければならない。

（測量成果の検定）

第14条 作業機関は，基盤地図情報に該当する測量成果等の高精度を要する測量成果又は利用度の高い測量成果で計画機関が指定するものについては，付録 3 に基づく検定を受けなければな らない。
2 前項の検定は，当該検定に関する技術を有する第三者機関によるものとする。

（測量成果等の提出）

第15条 作業機関は，作業が終了したときは，遅滞なく，測量成果等を付録 4 の様式に基づき整理

し，これらを計画機関に提出しなければならない。
2 第2編を適用して行う基準点測量（第5編において第 2 編を適用して行うこととしている ものを含む。）において得られる測量成果は，全て基盤地図情報に該当するものとする。
3 第 3 編から第 5 編までを適用して行ら地形測量及び写真測量，三次元点群測量並びに応用測量において得られる測量成果であって，基盤地図情報に該当するものは，第3編第12章 の規定を適用するものとする。
4 測量成果等は，原則としてあらかじめ計画機関が定める様式に従って電磁的記録媒体で提出するものとする。
5 計画機関は，第1項の規定により測量成果等の提出を受けたときは，速やかに当該測量成果等の精度，内容等を検査しなければならない。
6 測量成果等において位置を表示するときは，世界測地系によることを表示するものとする。

（機器等及び作業方法に関する特例）

第16条 計画機関は，必要な精度の確保及び作業能率の維持に支障がないと認められる場合には， この規程に定めのない機器及び作業方法を用いることができる。ただし，第5条第3項に基 づき，各編にその詳細を定める製品仕様書に係る事項については，この限りでない。
2 計画機関は，作業規程に定めのない新しい測量技術を使用する場合には，使用する資料，機器，測量方法等により精度が確保できることを作業機関等からの検証結果等に基づき確認 するとともに，確認に当たっては，あらかじめ国土地理院の長の意見を求めるものとする。
3 国土地理院が新しい測量技術による測量方法に関するマニュアルを定めた場合は，当該マ ニュアルを前項の確認のための資料として使用することができる。

第2編 基準点測量

第1章 通則
第1節 要旨
（要旨）
第17条 本編は基準点測量の作業方法等を定めるものとする。
2 「基準点測量」とは，既知点に基づき，基準点の位置又は標高を定める作業をいう。
3 「基準点」とは，測量の基準とするために設置された測量標であって，位置に関する数値的な成果を有するものをいう。
4 「既知点」とは，既設の基準点（以下「既設点」という。）であって，基準点測量の実施 に際してその成果が与件として用いられるものをいう。
5 「改測点」とは，基準点測量により改測される既設点であって，既知点以外のものをいう。 6 「新点」とは，基準点測量により新設される基準点（以下「新設点」という。）及び改測点をいう。
7 「PCV補正」とは，GN S Sアンテナの受信位置の変化量についてパラメータを用いて補正することをいう。

（基準点測量の区分）

第18条 基準点測量は，水準測量を除く狭義の基準点測量（以下「基準点測量」という。）及び水準測量に区分するものとする。また，水準測量は，レベル等による水準測量及びGNSS測量機による水準測量に区分するものとする。
2 基準点は，基準点測量によって設置される狭義の基準点（以下「基準点」という。）及び水準測量によって設置される水準点に区分するものとする。

第2節 製品仕様書の記載事項

（製品仕様書）
第19条 製品仕様書は，当該基準点測量又は水準測量の概覧，適用範囲，データ製品識別，データ内容及び構造，参照系，データ品質，データ品質評価手順，データ製品配布，メタデータ等 について体系的に記載するものとする。

第2章 基準点測量
第 1 節 要旨
（要旨）
第20条 「基準点測量」とは，既知点に基づき，新点である基準点の位置を定める作業をいう。
2 基準点測量は，既知点の種類，既知点間の距離及び新点間の距離に応じて，1 級基準点測量， 2 級基準点測量， 3 級基準点測量及び 4 級基準点測量に区分するものとする。
31 級基準点測量により設置される基準点を 1 級基準点， 2 級基準点測量により設置される基準点を 2 級基準点， 3 級基準点測量により設置される基準点を 3 級基準点及び 4 級基準点測量により設置される基準点を 4 級基準点という。
4 「GNS S」とは，人工衛星からの信号を用いて位置を決定する衛星測位システムの総称

をいい，G P S ，準天頂衛星システム，GLONASS，Galileo 等の衛星測位シス テムがある。GNS S 測量においては，G P S ，準天頂衛星システム及びGLONAS S を適用する。なお，準天頂衛星は，G P S 衛星と同等の衛星として扱うことができるものとし， これらの衛星をGPS•準天頂衛星と表記する。

（既知点の種類等）

第21条 前条第2項に規定する基準点測量の各区分における既知点の種類，既知点間の距離及び新点間の距離は，次表を標準とする。

区 分 項 目	1 級基準点測量	2 級基準点測量	3 級基準点測量	4 級基準点測量
既 知 点の種 類	電子基準点 一～四等三角点 1 級基準点	電子基準点 一～四等三角点 $1 \sim 2$ 級基準点	電子基準点 一～四等三角点 $1 \sim 2$ 級基準点	電子基準点 一～四等三角点 $1 \sim 3$ 級基準点
既知点間距離（m）	4， 000	2， 000	1，500	500
新点間距離（ m ）	1， 000	500	200	50

2 基本測量又は前項の区分によらない公共測量により設置した既設点を既知点として用いる場合は，当該既設点を設置した測量が前項のどの区分に相当するかを特定の上，前項の規定 に従い使用することができる。
31 級基準点測量及び 2 級基準点測量においては，既知点を電子基準点（付属標を除く。以下同じ。）のみとすることができる。この場合，既知点間の距離の制限は適用しない。ただ し，既知点とする電子基準点は，作業地域近傍のものを使用するものとする。
43 級基準点測量及び 4 級基準点測量における既知点は，厳密水平網平均計算及び厳密高低網平均計算又は三次元網平均計算により設置された同級の基準点を既知点とすることができ る。ただし，この場合においては，使用する既知点数の 2 分の 1 以下とする。
（基準点測量の方式）
第22条 基準点測量は，次の方式を標準とする。
一 1 級基準点測量及び 2 級基準点測量は，原則として，結合多角方式により行うものとす る。
二 3 級基準点測量及び 4 級基準点測量は，結合多角方式又は単路線方式により行うものと する。

2 結合多角方式の作業方法は，次表を標準とする。

区 分 項 目		1 級基準点測量	2 級基準点測量	3 級基準点測量	4 級基準点測量
$\begin{aligned} & \text { 結 } \\ & \text { 合 } \\ & \text { 多 } \\ & \text { 角 } \\ & \text { 方 } \\ & \text { 式 } \end{aligned}$	1 個の多角網における既知点点数	$2+\frac{\text { 新点数 }}{5}$ 上上（端数切上げ） 電子基準点のみを既知点とする場合は 2 点以上 とする。		3 点以上	
				－	－
		10辺以下	12辺以下	－	－
	路線の辺数	5 辺以下	6 辺以下	7 辺以下	10辺以下 （15辺以下）
		伐採樹木及び地形の状況等によっては，計画機関の承認を得て辺数を増やすことができる。			
	節点間の距離	250 m 以上	$150 \mathrm{m以上}$	$70 \mathrm{m以上}$	20 m 以上
		3 km 以下	2 km 以下	$1 \mathrm{km以下}$	$\begin{aligned} & 500 \mathrm{~m} \text { 以下 } \\ & (700 \mathrm{~m} \text { 以下) } \end{aligned}$
	路 線 長	G N S S 測量機を使用する場合は 5 km 以下と する。 ただし，電子基準点のみを既知点とする場合は この限りでない。			
	偏心距離の制 限	S：測点間距離 e：偏心距離 電子基準点のみを既知点とする場合は，Sを新点間の距離とし，新点を 1 点設置 する場合の偏心距離は，この式によらず 100 m 以内を標準とする。			
	路 線 図 形	多角網の外周路線に属する新点は，外周路線に属する隣接既知点を結ぶ直線から外側 40° 以下 の地域内に選点するものとし，路線の中の类角は， 60° 以上とする。ただし，地形の状況により やむを得ないときは，この限りでない。		同 左 50° 以下同 左	
	平 均 次 数	－	－	簡易水平網平均計平均次数を 2 次ま	算を行ら場合は でとする。
備 考		1．「路線」とは，既知点から他の既知点まで，既知点から交点まで又は交点から他の交点までをいう。 2．「単位多角形」とは，路線によって多角形が形成され，その内部に路線をもた ない多角形をいう。 3． $3 \sim 4$ 級基準点測量において，条件式による簡易水平網平均計算を行ら場合は，方向角の取付を行らものとする。 4． 4 級基準点測量のらち，電子基準点のみを既知点として設置した一～四等三角点， 1 級基準点， 2 級基準点や電子基準点を既知点とし，かつ，第34条第 2 項に			

	よる機器を使用する場合は，路線の辺数及び路線長について（ ）内を標準とす ることができる。

3 単路線方式の作業方法は，次表を標準とする。

項 目		1 級基準点測量	2 級基準点測量※	3 級基準点測量	4 級基準点測
単 路 線 方 式	方 向角の取付	既知点の 1 点以上において方向角の取付を行う。ただし，GNS S 測量機を使用する場合は，方向角の取付は省略する。			
	路 線 の 辺 数	7 辺以下	8 辺以下	10 辺以下	$\begin{aligned} & \hline \text { 15辺以下 } \\ & (20 \text { 辺以下 }) \end{aligned}$
	新 点 の 数	2 点以下	3 点以下	－	－
	路 線 長	電子基準点のみを既知点とする場合はこの限りでない。		1.5 km 以下	$\begin{aligned} & 700 \mathrm{~m} \text { 以下 } \\ & (1 \mathrm{~km} \text { 以下) } \end{aligned}$
	路 線 図 形	新点は，両既知点を 40° 以下の地域内 し，路線の中の夾角 る。ただし，地形の得ないときは，この	結ぶ直線から両側 に選点するものと角は， 60° 以上とす状況によりやむを限りでない。	$\begin{array}{lr} \hline \text { 同 左 } \\ 50^{\circ} & \text { 以下下 } \end{array}$	
	準 用 規 程	節点間の距離，偏心距離の制限，平均次数，路線の辺数の制限緩和及びG N S S 測量機を使用する場合の路線長の制限緩和は，結合多角方式の各々の項目の規定を準用する。			
備	考	1． 1 級基準点測量， 2 級基準点測量は，やむを得ない場合に限り単路線方式により行うことができる。 2． 4 級基準点測量のらち，電子基準点のみを既知点として設置した一～四等三角点， 1 級基準点， 2 級基準点や電子基準点を既知点とし，かつ，第 34 条第 2 項による機器を使用する場合は，路線の辺数及び路線長について （ ）内を標準とすることができる。			

（工程別作業区分及び順序）

第23条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 選点
三 測量標の設置
四 観測
五 計算
六 品質評価
七 成果等の整理

第2節 作業計画

（要旨）
第24条 作業計画は，第10条の規定によるほか，地形図上で新点の概略位置を決定し，平均計画図 を作成するものとする。

第3節 選点

（要旨）
第25条 本章において「選点」とは，平均計画図に基づき，現地において既知点（電子基準点を除 く。）の現況を調査するとともに，新点の位置を選定し，選点図及び平均図を作成する作業 をいう。
（既知点の現況調査）
第26条 既知点の現況調査は，異常の有無等を確認し，基準点現況調査報告書を作成するものとす る。

（新点の選定）

第27条 新点は，後続作業における利用等を考慮し，適切な位置に選定するものとする。

（建標承諾書等）

第28条 計画機関が所有権又は管理権を有する土地以外の土地に永久標識を設置しようとするとき は，当該土地の所有者又は管理者から建標承諾書等により承諾を得なければならない。
（選点図及び平均図の作成）
第29条 新点の位置を選定したときは，その位置及び視通線等を地形図に記入し，選点図を作成す るものとする。
2 平均図は，選点図に基づいて作成し，計画機関の承認を得るものとする。

第4節 測量標の設置

（要旨）
第30条 本章において「測量標の設置」とは，新設点の位置に永久標識等を設ける作業をいう。

（永久標識等の設置）

第31条 新設点の位置には，原則として，永久標識を設置し，測量標設置位置通知書（法第39条で読 み替える法第21条1項に基づき通知する文書をいう。以下同じ。）を作成するものとする。
2 永久標識の規格及び設置方法は，付録 5 によるものとする。
3 設置した永久標識については，写真等により記録するものとする。
4 永久標識には，必要に応じ固有番号等を記録したI Cタグを取り付けることができる。
53 級基準点及び 4 級基準点には，標杭又は標鋲を用いることができる。

（点の記の作成）

第32条 設置した永久標識については，点の記を作成するものとする。
2 電子基準点のみを既知点として設置した永久標識は，点の記の備考欄に「電子基準点のみ を既知点とした基準点」と記入するものとする。

第 5 節 観測

（要旨）
第33条 本章において「観測」とは，平均図等に基づき，トータルステーション（データコレクタ を含む。以下「TS」という。），セオドライト，測距儀等（以下「TS等」という。）を用いて，関係点間の水平角，鉛直角，距離等を観測する作業（以下「TS 等観測」という。）及びGNS S 測量機を用いて，G N S S 衛星からの電波を受信し，位相データ等を記録する作業（以下「GNSS観測」という。）をいう。
2 観測は，T S 等及びG N S S 測量機を併用することができる。
3 観測に当たつては，必要に応じ，測標水準測量を行うものとする。

（機器）

第34条 観測に使用する機器は，次表に掲げるもの又はこれらと同等以上のものを標準とする。

機 器	性 能	適 用
1 級トータルステーション		$1 \sim 4$ 級 基 準 点測量
2 級トータルステーション		$2 \sim 4$ 級基準点測量
3 級トータルステーション		4 級 基 準 点 測 量
1 級 G N S S 測 量 機		$1 \sim 4$ 級 基 準点測量
2 級 G N S S 測 量 機		$1 \sim 4$ 級 基 準点測量
1 級セオドライト	別表1による	$1 \sim 4$ 級 基 準点測量
2 級セオドライト		$2 \sim 4$ 級 基 準点測量
3 級セオドライト		4 級 基 準 点 測 量
測 距 儀		1～4 級 基 準 点測 量
3 級レ べル		測 標 水 準 測 量
2 級 標 尺		測 標 水 準 測 量
鋼 巻 尺	J I S 1 級	－

24 級基準点測量において，第 22 条第 2 項の路線の辺数 15 辺以下，路線長 700 メートル以下又 は同条第 3 項の路線の辺数 20 辺以下，路線長 1 キロメートル以下を適用する場合は，前項の規定によらず，次のいずれかの機器を使用して行らものとする。
－ 2 級以上の性能を有するTS
二 2 級以上の性能を有するGNSS測量機
三 2 級以上の性能を有するセオドライト及び測距儀
（機器の点検及び調整）
第35条 観測に使用する機器の点検は，観測着手前及び観測期間中に適宜行い，必要に応じて機器 の調整を行うものとする。

（観測の実施）

第36条 観測に当たり，計画機関の承認を得た平均図に基づき，観測図を作成するものとする。
2 観測は，平均図等に基づき，次に定めるところにより行うものとする。
一 T S 等観測の方法は，次表のとおりとする。ただし，水平角観測において，目盛変更が不可能な機器は，1対回の繰り返し観測を行うものとする。

		1 級基準点測量	2 級基準点測量		3 級基準点測量	4級基準点測量	
		$\begin{aligned} & 1 \text { 級トータルス } \\ & \text { テーション, } 1 \\ & \text { 級セオドライト } \end{aligned}$	$\begin{aligned} & 2 \text { 級トータルス } \\ & \text { テーション, } 2 \\ & \text { 級セオドライト } \end{aligned}$				
水	読定単位		$1^{\prime \prime}$	$1^{\prime \prime}$	$10^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$
平	対回数	2	2	3	2	2	
角 観 測	水平目盛位置	$0^{\circ}, ~ 90^{\circ}$	$0^{\circ}, ~ 90^{\circ}$	$\begin{gathered} 0^{\circ}, ~ 60^{\circ} \text {, } \\ 120^{\circ} \end{gathered}$	$0^{\circ}, ~ 90^{\circ}$	$0^{\circ}, ~ 90^{\circ}$	
鉛	読定単位	$1^{\prime \prime}$	$1^{\prime \prime}$	$10^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	
観 測	対回数	1	1	1	1	1	
距	読定単位	1 mm					
測 定	セット数	2	2	2	2	2	

イ 器械高，反射鏡高及び目標高は，ミリメートル位まで測定するものとする。
ロ T S を使用する場合は，水平角観測，鉛直角観測及び距離測定は，1視準で同時に行 うことを原則とするものとする。
八 水平角観測は， 1 視準 1 読定，望遠鏡正及び反の観測を 1 対回とする。
二 鉛直角観測は， 1 視準 1 読定，望遠鏡正及び反の観測を 1 対回とする。
ホ 距離測定は，1視準2読定を1セットとする。
～距離測定の気象補正に使用する気温及び気圧の測定は，次のとおり行らものとする。
（1）T S 又は測距儀を整置した測点（以下「観測点」という。）で行うものとする。 ただし， 3 級基準点測量及び 4 級基準点測量においては，気圧の測定を行わず，標準大気圧を用いて気象補正を行うことができる。
（2）気温及び気圧の測定は，距離測定の開始直前又は終了直後に行うものとする。
（3）観測点と反射鏡を整置した測点（以下「反射点」という。）の標高差が 400 メート ル以上のときは，観測点及び反射点の気温及び気圧を測定するものとする。ただ し，反射点の気温及び気圧は，計算により求めることができる。
卜 水平角観測において，対回内の観測方向数は，5方向以下とする。
チ 観測値の記録は，データコレクタを用いるものとする。ただし，データコレクタを用 いない場合は，観測手簿に記載するものとする。
リ TSを使用した場合で，水平角観測の必要対回数に合わせ，取得された鉛直角観測値及び距離測定値は，全て採用し，その平均値を用いることができる。
二 GNSS観測は，次により行らものとする。
イ 観測距離が 10 キロメートル以上の観測は， 1 級 G N S S 測量機により 2 周波で行う。 ただし， 2 級 G N S S 測量機を使用する場合には，観測距離を 10 キロメートル未満にな るよう節点を設け行うことができる。
ロ 観測距離が 10 キロメートル未満の観測は，2級以上の性能を有するGNSS測量機に より 1 周波で行う。ただし， 1 級 G N S S 測量機による場合は 2 周波で行うことができ る。
八 GNSS観測の方法は，次表を標準とする。

観 測 方 法	観測時間	データ取得間隔	摘 要
スタティック法	120分以上	30秒以下	$1 \sim 2$ 級基準点測量（10km以上）
	60分以上	30秒以下	$1 \sim 2$ 級基準点測量（ 10 km 末満） $3 \sim 4$ 級基準点測量
短縮スタティック法	20分以上	15秒以下	$3 \sim 4$ 級 基 準 点測量
キネマティック法	10 秒以上 1	5 秒以下	$3 \sim 4$ 級 基 準 点 測 量
$\begin{array}{cccccc} R & T & K & \text { 法 } & \text { ※ } & 3 \\ \hline \text { ネ } & ッ & ト & \text { ワ } & - & \text { 型 } \\ R & T & K & \text { 法 } & \text { ※ } & 3 \end{array}$	10秒以上※2	1 秒	$3 \sim 4$ 級 基 準 点 測 量
	10 秒以上 22	1 秒	$3 \sim 4$ 級 基 準 点 測 量
備 考	※ 1 10エポック以上のデータが取得できる時間とする。 ※2 FI X解を得てから10エポック以上のデータが取得できる時間 とする。 ※3 後処理で解析を行う場合も含めるものとする。		

二 観測方法による使用衛星数等は，次表を標準とする。

	スタティック法	短縮スタティック法 キネマティック法 RTK法 ネットワーク型 R T K 法
G P S－準天頂衛星	4 衛星以上	5 衛星以上
GPS•準天頂衛星及びGLONASS衛星	5 衛星以上	6 衛星以上

① G L O N A S S 衛星を用いて観測する場合は，G P S •準天頂衛星及びG L O NAS S 衛星を，それぞれ 2 衛星以上を用いること。
摘 要
（2）スタティック法による 10 km 以上の観測では，G P S •準天頂衛星を用いて観測 する場合は 5 衛星以上とし，G P S •準天頂衛星及びGRONASS衛星を用 いて観測する場合は 6 衛星以上とする。

ホ アンテナ高は，ミリメートル位まで測定するものとする。
へ 標高の取付観測において，距離が500メートル以下の場合は，楕円体高の差を高低差と して使用できる。

ト G N S S 衛星の稼働状態，飛来情報等を考慮し，片寄った配置の使用は避けるものと する。
チ G N S S 衛星の最低高度角は15度を標準とする。
リスタティック法及び短縮スタティック法については，次のとおり行うものとする。
（1）スタティック法は，複数の観測点にGNSS測量機を整置して，同時にGNSS衛星からの信号を受信し，それに基づく基線解析により，観測点間の基線ベクトル を求める観測方法である。
（2）短縮スタティック法は，複数の観測点にGNSS測量機を整置して，同時にGN S S 衛星からの信号を受信し，観測時間を短縮するため，基線解析において衛星の組合せを多数作るなどの処理を行い，観測点間の基線ベクトルを求める観測方法で ある。
（3）観測図の作成は，同時に複数のGNSS測量機を用いて行う観測（以下「セッシ ョン」という。）計画を記入するものとする。
（4）電子基準点のみを既知点とする場合以外の観測は，既知点及び新点を結合する多角路線が閉じた多角形となるように形成させ，次のいずれかにより行うものとす る。
（ i ）異なるセッションの組み合わせによる点検のための多角形を形成し，観測を行 う。
（ii）異なるセッションによる点検のため，1辺以上の重複観測を行う
（5）電子基準点のみを既知点とする場合の観測は，使用する全ての電子基準点で他の 1 つ以上の電子基準点と結合する路線を形成させ，行うものとする。電子基準点間 の結合の点検路線に含まれないセッションについては（4）の（i）又は（ii）に よるものとする。
（6）スタティック法及び短縮スタティック法におけるアンテナ高の測定は，G N S S アンテナ底面までとする。なお，アンテナ高は標識上面からGNS S アンテナ底面 までの距離を垂直に測定することを標準とする。
ヌ キネマティック法は，基準となるGNSS測量機を整置する観測点（以下「固定局」 という。）及び移動する観測点（以下「移動局」という。）で，同時にGN S S 衛星か らの信号を受信して初期化（整数値バイアスの決定）などに必要な観測を行う。その後，移動局を複数の観測点に次々と移動して観測を行い，それに基づき固定局と移動局 の間の基線ベクトルを求める観測方法である。なお，初期化及び基線解析は，観測終了後に行う。

ル R T K 法は，固定局及び移動局で同時にGNSS衛星からの信号を受信し，固定局で取得した信号を，無線装置等を用いて移動局に転送し，移動局側において即時に基線解析を行らことで，固定局と移動局の間の基線ベクトルを求める。その後，移動局を複数 の観測点に次々と移動して，固定局と移動局の間の基線ベクトルを即時に求める観測方法である。なお，基線ベクトルを求める方法は，直接観測法又は間接観測法による。
（1）直接観測法は，固定局及び移動局で同時にGNSS衛星からの信号を受信し，基線解析により固定局と移動局の間の基線ベクトルを求めるものである。直接観測法 による観測距離は，500メートル以内を標準とする。
（2）間接観測法は，固定局及び 2 箇所以上の移動局で同時にGNSS衛星からの信号 を受信し，基線解析により得られた 2 つの基線ベクトルの差を用いて移動局間の基線ベクトルを求めるものである。間接観測法による固定局と移動局の間の距離は10 キロメートル以内とし，間接的に求める移動局間の距離は500メートル以内を標準と する。
ヲ ネットワーク型 R T K 法は，位置情報サービス事業者（国土地理院の電子基準点網の観測データ配信を受けている者，又は 3 点以上の電子基準点を基に，測量に利用できる形式でデータを配信している者をいう。以下同じ。）で算出された補正データ等又は面補正パラメータを，携帯電話等の通信回線を介して移動局で受信すると同時に，移動局 でGNSS衛星からの信号を受信し，移動局側において即時に解析処理を行って位置を求める。その後，複数の観測点に次々と移動して移動局の位置を即時に求める観測方法 である。観測終了後に，位置情報サービス事業者から補正データ等又は面補正パラメー夕を取得することで，後処理により解析処理を行うことができるものとする。なお，基線ベクトルを求める方法は，直接観測法又は間接観測法による。
（1）直接観測法は，位置情報サービス事業者で算出された移動局近傍の任意地点の補正データ等と移動局の観測データを用いて，基線解析により基線ベクトルを求める観測方法である。
（2）間接観測法は，次の方式により基線ベクトルを求める観測方法である。
（i）2台同時観測方式による間接観測法は，2 か所の移動局で同時観測を行い，得 られたそれぞれの三次元直交座標の差から移動局間の基線ベクトルを求める。
（ ii）1台準同時観測方式による間接観測法は，移動局で得られた三次元直交座標と その後，速やかに移動局を他の観測点に移動して観測を行い，得られたそれぞれ の三次元直交座標の差から移動局間の基線ベクトルを求める。なお，観測は，速 やかに行うとともに，必ず往復観測（同方向の観測も可）を行い，重複による基線ベクトルの点検を実施する。
三 測標水準測量は，次のいずれかの方式により行らものとする。
イ 直接水準測量は， 4 級水準測量に準じて行うものとする。
－間接水準測量は，次のとおり行うものとする。
（1）器械高，反射鏡高及び目標高は，ミリメートル位まで測定するものとする。
（2）間接水準測量区間の一端に 2 つの固定点を設け，鉛直角観測及び距離測定を行う ものとする。
（3）間接水準測量における環の閉合差の許容範囲は，3センチメートルに観測距離 （キロメートル単位とする。）を乗じたものとする。ただし，観測距離が 1 キロメー トル未満における許容範囲は3センチメートルとする。
（4）鉛直角観測及び距離測定は，距離が 500 メートル以上のときは 1 級基準点測量，距離が500メートル未満のときは 2 級基準点測量に準じて行うものとする。ただし，鉛直角観測は 3 対回とし，できるだけ正方向及び反方向の同時観測を行うものとす る。
（5）間接水準測量区間の距離は，2 キロメートル以下とする。
（観測値の点検及び再測）
第37条 観測値について点検を行い，許容範囲を超えた場合は，再測するものとする。

一 T S 等による許容範囲は，次表を標準とする。

		1 級基準点測量	2 級基準点測量		3 級基準点測量	4 級基準点測量	
		$\begin{aligned} & 1 \text { 級トータル } \\ & \text { ステーション, } \\ & 1 \text { 級セオドラ } \\ & \text { イト } \end{aligned}$	$\begin{aligned} & 2 \text { 級トータル } \\ & \text { ステーション } \\ & 2 \text { 級セオドラ } \\ & \text { イト } \end{aligned}$				
水	倍 角 差		$15^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$30^{\prime \prime}$	$60^{\prime \prime}$
	観 測 差	8＂	$10^{\prime \prime}$	$20^{\prime \prime}$	$20^{\prime \prime}$	$40^{\prime \prime}$	
鉛	$\begin{array}{lrl} \text { 高度 } & \text { 定数 } & \text { の } \\ \text { 較 } & \text { 差 } \end{array}$	$10^{\prime \prime}$	$15^{\prime \prime}$	$30^{\prime \prime}$	$30^{\prime \prime}$	$60^{\prime \prime}$	
距	$1 \text { セット内の }$測定値の較差	20 mm					
測	各セットの平均値の較差	20 mm					
測	$\begin{aligned} & \text { 往復観測値の } \\ & \text { 較 差 } \end{aligned}$	$20 \mathrm{~mm} \sqrt{\text { S }}$	$20 \mathrm{~mm} \sqrt{\text { S }}$	$20 \mathrm{~mm} \sqrt{5}$	$20 \mathrm{~mm} \sqrt{5}$	$20 \mathrm{~mm} \sqrt{\text { S }}$	
備	考	S は観測距離（片道，km 単位）とする。					

二 GNSS観測による基線解析の結果はFIX解とする。
（偏心要素の測定）
第38条 基準点で直接に観測ができない場合は，偏心点を設け，偏心要素を測定し，許容範囲を超 えた場合は再測するものとする。
一 GNSS観測において，偏心要素のための零方向の視通が確保できない場合は，方位点 を設置することができる。
二 GNSS観測における方位点の設置距離は200メートル以上とし，偏心距離の 4 倍以上を標準とする。なお，観測は第36条第2項第二号の規定を準用する。

三 偏心角の測定は，次表を標準とする。

偏心距離	機器及び測定方法	測定単位	点検項目及び許容範囲
30 cm 末満	偏心測定紙に方向線を引き，分度器に よって偏心角を測定する。	1°	－
30 cm 以上 2 m 未満	偏心測定紙に方向線を引き，計算によ り偏心角を算出する。	10^{\prime}	－
2 m 以上 10 m 未満	トータルステーション又はセオドライ トを用いて，第36条を準用する。	1^{\prime}	倍角差 $120^{\prime \prime}$ 観測差 $90^{\prime \prime}$
10 m 以上 50 m 未満		$10^{\prime \prime}$	倍角差 $60^{\prime \prime}$ 観測差 $40^{\prime \prime}$
$\begin{gathered} 50 \mathrm{mW上} \\ 100 \mathrm{~m} \text { 未満 } \end{gathered}$			倍角差 $30^{\prime \prime}$ 観測差 $20^{\prime \prime}$
100 m 以上 250 m 未満		$1^{\prime \prime}$	倍角差 $20^{\prime \prime}$ 観測差 $10^{\prime \prime}$

四 偏心距離の測定は，次表を標準とする。

偏心距離	機器及び測定方法	測定単位	点検項目及び許容範囲
30 cm 末満	物差により測定する。	mm	－
$\begin{aligned} & 30 \mathrm{~cm} \text { 以上 } \\ & 2 \mathrm{~m} \text { 末満 } \end{aligned}$	鋼巻尺により 2 読定， 1 往復を測定す る。	mm	往復の較差 5 mm
$\begin{aligned} & 2 \mathrm{~m} \text { 以上 } \\ & 50 \mathrm{~m} \text { 未満 } \end{aligned}$	トータルステーション又は測距儀を用 いて，第36条を準用する。	mm	第37条を準用する
$50 \mathrm{m以上}$			
備 考	1．偏心距離が 5 mm 未満，かつ，辺長が 1 km を越す場合は偏心補正計算を省略で きる。 2．偏心距離が 10 m 以下の場合は，傾斜補正以外の補正は省略できる。		

五 本点と偏心点間の高低差の測定は，次表を標準とする。

偏心距離	機器及び測定方法	測定単位	点検項目及び許容範囲
30 cm 末満	独立水準器を用いて，偏心点を本点と同標高に設置する。	－	－
30 cm 以上 100 m 未満	4 級水準測量に準じて観測する。ただ し，後視及び前視に同一標尺を用いて片道観測の測点数を1点とすることができ る。	mm	往復の較差 $20 \mathrm{~mm} \sqrt{\mathrm{~S}}$
	4 級基準点測量の鉛直角観測に準じて測定する。ただし，正，反方向の鉛直角観測に代えて，器械高の異なる片方向によ る 2 対回の鉛直角観測とすることができ る。	$20^{\prime \prime}$	高度定数の較差 $60^{\prime \prime}$高低差の正反較差 100 mm
$\begin{aligned} & 100 \mathrm{~m} \text { 以上 } \\ & 250 \mathrm{~m} \text { 未満 } \end{aligned}$	4 級水準測量に準じて測定する。	mm	往復の較差 $20 \mathrm{~mm} \sqrt{\text { S }}$
	$2 \sim 3$ 級基準点測量の鉛直角観測に準じ て測定する。	$10^{\prime \prime}$	高度定数の較差 $30^{\prime \prime}$高低差の正反較差 150 mm
備 考	S は，測定距離（km単位）とする。		

第6節 計算

（要旨）
第39条 本章において「計算」とは，新点の水平位置及び標高を求めるため，次の各号により行ら ものとする。
一 T S 等による基準面上の距離の計算は，楕円体高を用いる。なお，楕円体高は，標高と ジオイド高から求めるものとする。
二 ジオイド高は，次の方法により求めた値とする。
ィ 国土地理院が提供する最新のジオイド・モデル（以下「ジオイド・モデル」という。） から求める。
ロ イのジオイド・モデルが構築されていない地域においては，GNSS観測及び水準測量等で求めた局所ジオイド・モデルから求める。
三 3 級基準点測量及び 4 級基準点測量は，基準面上の距離の計算は楕円体高に代えて標高 を用いることができる。この場合において経緯度計算を省略することができる。

（計算の方法等）

第 40 条 計算は，付録 6 の計算式，又はこれと同精度若しくはこれを上回る精度を有することが確認できる場合は，当該計算式を使用することができるものとする。
2 計算結果の表示単位等は，次表のとおりとする。

\qquad	直角座標 ※	経緯度	標 高	ジオイド高	角 度	辺 長
単 位	m	秒	m	m	秒	m
位	0.001	0.0001	0.001	0.001	1	0.001
備 考	※ 平面直角座標系に規定する世界測地系に従ら直角座標					

3 TS等で観測を行った標高の計算は，0．01メートル位までとすることができる。
4 GNS S 観測における基線解析では，次の各号により実施することを標準とする。
一 計算結果の表示単位等は，次表のとおりとする。

表 示	項 目
単 位	m
線ベクトル成分	
位	0.001

二 GNSS衛星の軌道情報は，放送暦を標準とする。
三 スタティック法及び短縮スタティック法による基線解析では，原則としてPCV補正を行らものとする。
四 気象要素の補正は，基線解析ソフトウェアで採用している標準大気によるものとする。
五 基線解析は，基線長が 10 キロメートル以上の場合は 2 周波で行らものとし，基線長が 10 キロメートル未満の場合は 1 周波又は 2 周波で行うものとする。
六 基線解析の固定点の緯度及び経度は，成果表の値（以下この章において「元期座標」と いう。）又は国土地理院が提供する地殻変動補正パラメータを使用してセミ・ダイナミッ

ク補正を行った値（以下この章において「今期座標」という。）とする。なお，セミ・ダ イナミック補正に使用する地殻変動補正パラメータは，測量の実施時期に対応したものを使用するものとする。以後の基線解析は，固定点の緯度及び経度を用いて求められた緯度及び経度を順次入力するものとする。
七 基線解析の固定点の楕円体高は，成果表の標高とジオイド高から求めた値とし，元期座標又は今期座標とする。ただし，固定点が電子基準点の場合は，成果表の楕円体高（元期座標）又は今期座標とする。以後の基線解析は，固定点の棈円体高を用いて求められた楕円体高を順次入力するものとする。
八 基線解析に使用するGNSS測量機の高度角は，観測時に設定した受信高度角とする。

（点検計算及び再測）

第41条 点検計算は，観測終了後，次の各号により行らものとする。点検計算の結果，許容範囲を超えた場合は，再測を行う等適切な措置を講ずるものとする。

一 T S 等観測

ィ 全ての単位多角形及び次の条件により選定された全ての点検路線について，観測値の良否を判定するものとする。
（1）点検路線は，既知点と既知点を結合させるものとする。
（2）点検路線は，なるべく短いものとする。
（3）全てのすべての既知点は，1 つ以上の点検路線で結合させるものとする。
（4）全ての単位多角形は，路線の 1 つ以上を点検路線と重複させるものとする。
ロ TS 等による点検計算の許容範囲は，次表を標準とする。

		1 級基準点測量	2 級基準点測量	3 級基準点測量	4 級基準点測量
結 単	水平位置の閉合差	$100 \mathrm{~mm}+20 \mathrm{~mm} \sqrt{\mathrm{~N}} \sum \mathrm{~S}$	$100 \mathrm{~mm}+30 \mathrm{~mm} \sqrt{\mathrm{~N}} \quad \sum \mathrm{~S}$	$150 \mathrm{~mm}+50 \mathrm{~mm} \sqrt{\mathrm{~N}} \Sigma \mathrm{~S}$	$150 \mathrm{~mm}+100 \mathrm{~mm} \sqrt{\mathrm{~N}} \Sigma \mathrm{~S}$
$\begin{array}{\|l\|l\|} \hline \text { 多路 } \\ \text { 角線 } \\ \hline \end{array}$	標 高の閉合差	$200 \mathrm{~mm}+50 \mathrm{~mm} \sum \mathrm{~S} / \sqrt{\mathrm{N}}$	$200 \mathrm{~mm}+100 \mathrm{~mm} \Sigma \mathrm{~S} / \sqrt{\mathrm{N}}$	$200 \mathrm{~mm}+150 \mathrm{~mm} \sum \mathrm{~S} / \sqrt{\mathrm{N}}$	$200 \mathrm{~mm}+150 \mathrm{~mm} \sum \mathrm{~S} / \sqrt{\mathrm{N}}$
単多 位形	水平位置の閉合差	$10 \mathrm{~mm} \sqrt{\mathrm{~N}} \sum \mathrm{~S}$	$15 \mathrm{~mm} \sqrt{\mathrm{~N}} \sum \mathrm{~S}$	$25 \mathrm{~mm} \sqrt{\mathrm{~N}} \sum \mathrm{~S}$	$50 \mathrm{~mm} \sqrt{\mathrm{~N}} \sum \mathrm{~S}$
	標 高の閉合差	$50 \mathrm{~mm} \Sigma \mathrm{~S} / \sqrt{\mathrm{N}}$	$100 \mathrm{~mm} \sum \mathrm{~S} / \sqrt{\mathrm{N}}$	$150 \mathrm{~mm} \Sigma \mathrm{~S} / \sqrt{\mathrm{N}}$	$300 \mathrm{~mm} \sum \mathrm{~S} / \sqrt{\mathrm{N}}$
標 高	差の正反較差	300 mm	200 mm	150 mm	100 mm
備	考	Nは辺数，$\sum \mathrm{S}$ は路線長（km 単位）とする。			

二 GNSS観測
イ 電子基準点のみを既知点とする場合以外の観測
（1）観測値の点検は，全てのセッションについて，次のいずれかの方法により行うも のとする。
（ i ）異なるセッションの組み合わせによる最小辺数の多角形を選定し，基線ベクト ルの環閉合差を計算する。
（ii）異なるセッションで重複する基線ベクトルの較差を比較点検する。
（2）点検計算の許容範囲は，次表を標準とする。

環閉合差及び重複する基線ベクトルの較差の許容範囲

項		許容範囲	備 考
基線ベクトルの	水平 $(\Delta N, ~ \Delta E)$	$20 \mathrm{~mm} \sqrt{\mathrm{~N}}$	N ：辺数 $\Delta N:$ 水平面の南北成分の閉合差又は較差 $\Delta E:$ 水平面の東西成分の閉合差又は較差 ΔU ：高さ成分の閉合差又は較差
環閉合差	高さ（ ΔU ）	$30 \mathrm{~mm} \sqrt{\mathrm{~N}}$	
重複する基線ベ	水平 $(\Delta N, ~ \Delta E)$	20 mm	
クトルの較差	高さ（ ΔU ）	30 mm	

ロ 電子基準点のみを既知点とする場合の観測
（1）点検計算に使用する既知点の緯度，経度及び楕円体高は，今期座標とする。
（2）観測値の点検は，次の方法により行うものとする。
（ i ）電子基準点間の結合の計算は，最少辺数の路線について行う。ただし，辺数が同じ場合は路線長が最短のものについて行う。
（ii）全ての電子基準点は，1 つ以上の点検路線で結合させるものとする。
（iii）結合の計算に含まれないセッションについては，イ（1）の（i）又は（ii） によるものとする。
（3）点検計算の許容範囲は，次表を標準とする。
（i）電子基準点間の閉合差の許容範囲

	項 目	許容範囲	備 考
結合多 角又は 単路線	水平（ $\Delta N, ~ \Delta E)$	$60 \mathrm{~mm}+20 \mathrm{~mm} \sqrt{\mathrm{~N}}$	N ：辺数 $\Delta N:$ 水平面の南北成分の閉合差 $\Delta E:$ 水平面の東西成分の閉合差 ΔU ：高さ成分の閉合差
	高さ（ $\Delta U)$	$150 \mathrm{~mm}+30 \mathrm{~mm} \sqrt{\mathrm{~N}}$	

（ii）環閉合差及び重複する基線ベクトルの較差の許容範囲は，イ（2）の規定を準用する。
2 点検計算の結果は，精度管理表にとりまとめるものとする。

（平均計算）

第42条 平均計算は，次により行うものとする。
2 既知点 1 点を固定するGNS S 測量機による場合の三次元網平均計算は，閉じた多角形を形成させ，次の号により行うものとする。ただし，電子基準点のみを既知点とする場合は除 ＜。
一 仮定三次元網平均計算において，使用する既知点の緯度及び経度は元期座標とし，楕円体高は成果表の標高とジオイド高から求めた値とする。ただし，電子基準点の楕円体高は，成果表の楕円体高とする。
二 仮定三次元網平均計算の重量（P）は，次のいずれかの分散•共分散行列の逆行列を用 いるものとする。
イ 基線解析により求められた分散•共分散の値
ただし，全ての基線の解析手法，解析時間が同じ場合に限る。

口 水平及び高さの分散の固定値
ただし，分散の固定値は， $\mathrm{d}_{\mathrm{N}}=(0.004 \mathrm{~m})^{2} \mathrm{~d}_{\mathrm{E}}=(0.004 \mathrm{~m})^{2} \mathrm{~d}_{\mathrm{u}}=(0.007 \mathrm{~m})^{2}$ とする。
三 仮定三次元網平均計算による許容範囲は，次のいずれかによるものとする。
1 基線ベクトルの各成分による許容範囲は，次表を標準とする。

	1 級基準点測量	2 級基準点測量	3 級基準点測量	4 級基準点測量
基線ベクトルの各成分の残差	20 mm	20 mm	20 mm	20 mm
水平位置の閉合差	$\begin{aligned} & \Delta s=100 \mathrm{~mm}+40 \mathrm{~mm} \sqrt{\mathrm{~N}} \\ & \Delta s: \text { 既知点の成果値と仮定三次元網平均計算結果から求めた距離 } \\ & \mathrm{N}: \text { 既知点までの最少辺数 (辺数が同じ場合は路線長の最短のもの) } \end{aligned}$			
標高の閉合差	$250 \mathrm{~mm}+45 \mathrm{~mm} \sqrt{\mathrm{~N}}$ を標準とする N ：辺数			

口 方位角，斜距離，楕円体比高による場合の許容範囲は，次表を標準とする。

\qquad	1 級基準点測量	2 級基準点測量	3 級基準点測量	4 級基準点測量
方位角の残差	5 秒	10秒	20秒	80秒
斜距離の残差	$20 \mathrm{~mm}+4 \times 10^{-6} \mathrm{D} \quad \mathrm{D}:$ 測定距離			
楕円体比高の残差	$30 \mathrm{~mm}+4 \times 10^{-6} \mathrm{D} \quad \mathrm{D}:$ 測定距離			
水平位置の閉合差	$\begin{aligned} & \Delta s=100 \mathrm{~mm}+40 \mathrm{~mm} \sqrt{\mathrm{~N}} \\ & \Delta s: \text { 既知点の成果値と仮定三次元網平均計算結果から求めた距離 } \\ & \mathrm{N}: \text { 既知点までの最少辺数 (辺数が同じ場合は路線長の最短のもの) } \end{aligned}$			
標高の閉合差	$250 \mathrm{~mm}+45 \mathrm{~mm} \sqrt{ }$ 標準とする N ：辺数			

3 既知点 2 点以上を固定する厳密水平網平均計算，厳密高低網平均計算，簡易水平網平均計算，簡易高低網平均計算及び三次元網平均計算は，平均図に基づき行うものとし，平均計算は次の各号 により行うものとする。

一 TS等観測
ィ 厳密水平網平均計算の重量（P）には，次表の数値を用いるものとする。

	$\mathrm{m}_{\text {s }}$	γ	m_{t}
1 級基準点測量	10 mm	5×10^{-6}	1．8＂${ }^{\prime \prime}$
2 級基準点測量			3．5＂
3 級基準点測量			4． $5^{\prime \prime}$
4 級基準点測量			13．5＂

口 簡易水平網平均計算及び簡易高低網平均計算を行ら場合，方向角については各路線の観測点数の逆数，水平位置及び標高については，各路線の距離の総和（ 0.01 キロメート ル位までとする。）の逆数を重量（P）とする。
八厳密水平網平均計算及び厳密高低網平均計算による各項目の許容範囲は，次表を標準

とする。

| 項目 分 | 1 級基準点測量 | 2 級基準点測量 | 3 級基準点測量 | 4 級基準点測量 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 一方 向 の残 差 | $12^{\prime \prime}$ | $15^{\prime \prime}$ | - | - |
| 距 離 の 残 差 | 80 mm | 100 mm | - | - |
| 水平角の単位重量
 当たりの標準偏差 | $10^{\prime \prime}$ | $12^{\prime \prime}$ | $15^{\prime \prime}$ | $20^{\prime \prime}$ |
| 新点位置の標準偏差 | 100 mm | 100 mm | 100 mm | 100 mm |
| 高低角 の残 差 | $15^{\prime \prime}$ | $20^{\prime \prime}$ | - | - |
| 高低角の単位重量
 当たりの標準偏差 | $12^{\prime \prime}$ | $15^{\prime \prime}$ | $20^{\prime \prime}$ | $30^{\prime \prime}$ |
| 新点標高の標準偏差 | 200 mm | 200 mm | 200 mm | 200 mm |

ニ 簡易水平網平均計算及び簡易高低網平均計算による各項目の許容範囲は，次表を標準

区項目	区分	3級基準点測量	4 級基準点測量
路線方向角の残差	$50^{\prime \prime}$	$120^{\prime \prime}$	
路線座標差の残差	300 mm	300 mm	
路線高低差の残差	300 mm	300 mm	

二 GNSS観測
イ 電子基準点のみを既知点とする場合以外の観測
（1）三次元網平均計算において，使用する既知点の緯度及び経度は元期座標とし，楕円体高は成果表の標高及びジオイド高から求めた値とする。ただし，電子基準点の楕円体高は，成果表の楕円体高とする。
（2）新点の標高は，次のいずれかの方法により求めた値とする。
（ i ）ジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正する。
（ ii）（i）のジオイド・モデルが構築されていない地域においては，G N S S 観測と水準測量等により，局所ジオイド・モデルを構築し，求めたジオイド高を用いて，楕円体高を補正する。
（3）三次元網平均計算の重量（P）は，前項第二号の規程を準用する。
（4）三次元網平均計算による各項目の許容範囲は，次表を標準とする。

| 区 分 | 1 級基準点測量 | 2 級基準点測量 | 3 級基準点測量 | 4 級基準点測量 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 斜 距 離 の 残 差 | 80 mm | 100 mm | - | - |
| 新点水平位置の標準偏差 | 100 mm | 100 mm | 100 mm | 100 mm |
| 新点標高の標準偏差 | 200 mm | 200 mm | 200 mm | 200 mm |

－電子基準点のみを既知点とする場合の観測
（1）三次元網平均計算において，使用する既知点の緯度，経度及び楕円体高は今期座標 とする。
（2）新点の緯度，経度及び楕円体高は，三次元網平均計算により求めた緯度，経度及び楕円体高にセミ・ダイナミック補正を行った元期座標とする。
（3）新点の標高決定は，イ（2）の規定を準用する。
（4）三次元網平均計算の重量（P）は，前項第二号の規定を準用する。
（5）三次元網平均計算による各項目の許容範囲は，イ（4）の規定を準用する。
4 平均計算に使用した概算値と平均計算結果値の座標差が 1 メートルを超えた観測点につい ては，平均計算結果の値を概算値として平均計算を繰り返す反復計算を行うものとする。
5 平均計算に使用するプログラムは，計算結果が正しいと確認されたものを使用するものと する。

6 平均計算の結果は，精度管理表にとりまとめるものとする。

第7節 品質評価

（品質評価）
第43条 「品質評価」とは，基準点測量成果について，製品仕様書が規定するデータ品質を満足し ているか評価する作業をいう。
2 作業機関は，品質評価手順に基づき品質評価を実施するものとする。
3 評価の結果，品質要求を満足していない項目が発見された場合は，必要な調整を行うもの とする。

第8節 成果等の整理

（メタデータの作成）

第44条 基準点成果のメタデータは，製品仕様書に従いファイルの管理及び利用において必要とな る事項について，作成するものとする。
（成果等）
第45条 成果等は，次の各号のとおりとする。ただし，作業方法によってはこの限りでない。
一 観測手簿
二 観測記簿
三 計算簿
四 平均図
五 基準点成果表
六 点の記
七 建標承諾書
八 測量標設置位置通知書
九 基準点網図
十 精度管理表

十一 品質評価表
十二 測量標の地上写真
十三 基準点現況調査報告書
十四 成果数値データ
十五 点検測量
十六メタデータ
十七 その他の資料

第3章 レベル等による水準測量

第1節 要旨
（要旨）
第46条「レベル等による水準測量」とは，既知点に基づき，レベル及びTS等を用いて，新点で ある水準点の標高を定める作業をいう。
2 レベル等による水準測量は，既知点の種類，既知点間の路線長，観測の精度等に応じて， 1 級水準測量， 2 級水準測量， 3 級水準測量， 4 級水準測量及び簡易水準測量に区分するも のとする。
31 級水準測量により設置される水準点を 1 級水準点， 2 級水準測量により設置される水準点を 2 級水準点， 3 級水準測量により設置される水準点を 3 級水準点， 4 級水準測量により設置される水準点を 4 級水準点及び簡易水準測量により設置される水準点を簡易水準点とい う。
（既知点の種類等）
第47条 既知点の種類及び既知点間の路線長は，次表を標準とする。

	1 級水漼測量	2 級水準測量	3 級水準測量	4 級水準測量	簡易水準測量
既知点の種 類	一等水準点	一～二等水潐点	一～三等水潐点	一～三等水準点	一～三等水準点
	1 級水準点	1～2級水淮点	$1 \sim 3$ 級水準点	$1 \sim 4$ 級水準点	$1 \sim 4$ 級水準点
既知点間の路線長	150km以下	150 km 以下	50km以下	50km以下	50km以下

（水準路線）

第48条 「水準路線」とは，2点以上の既知点を結合する路線をいう。直接に水準測量で結ぶこと ができない水準路線は，渡海（河）水準測量により連結するものとする。

（レベル等による水準測量の方式）

第49条レベル等による水準測量は，次の方式を標準とする。
一 直接水準測量方式
二 渡海（河）水準測量方式
測量方法は，観測距離に応じて，次表により行うものとする。

| 測量方法 | 観 \quad 測 \quad 距 離 |
| :--- | :--- | :--- |
| 交互法 | 1 級水準測量は約 300 m 以下とする。 $2 \sim 4$ 級水準測量は約450m以下とする。 |
| 経緯儀法 | $1 \sim 4$ 級水準測量は約 1 km 以下とする。 |
| 俯仰ねじ法 | $1 \sim 4$ 級水準測量は約 2 km 以下とする。 |

（工程別作業区分及び順序）

第50条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 選点
三 測量標の設置
四 観測
五 計算
六 品質評価
七 成果等の整理

第2節 作業計画

（要旨）
第51条 作業計画は，第10条の規定によるほか，地形図上で新点の概略位置を決定し，平均計画図 を作成するものとする。

第3節 選点
（要旨）
第52条 本章において「選点」とは，平均計画図に基づき，現地において既知点の現況及び水準路線を調査するとともに，新点の位置を選定し，選点図及び平均図を作成する作業をいう。

（既知点の現況調査）

第53条 既知点の現況調査は，異常の有無等を確認し，基準点現況調査報告書を作成する。
（新点の選定）
第54条 新点は，後続作業における利用等を考慮し，適切な位置に選定するものとする。
（建標承諾書等）
第55条 計画機関が所有権又は管理権を有する土地以外の土地に永久標識を設置しようとするとき は，当該土地の所有者又は管理者から建標承諾書等により承諾を得なければならない。
（選点図及び平均図等の作成）
第56条 新点の位置を選定したときは，その位置及び路線等を地形図に記入し，選点図を作成する ものとする。

2 平均図及び水準路線図は，選点図に基づいて作成する。ただし，平均図は計画機関の承認 を得るものとする。

第4節 測量標の設置
（要旨）
第57条 本章において「測量標の設置」とは，新設点の位置に永久標識を設ける作業をいう。

（永久標識の設置）

第58条 新設点の位置には，原則として，永久標識を設置し，測量標設置位置通知書を作成するも のとする。

2 永久標識の規格及び設置方法は，付録 5 によるものとする。
3 設置した永久標識については，写真等により記録するものとする。
4 永久標識には，必要に応じ固有番号等を記録したI Cタグを取り付けることができる。
54 級水準点及び簡易水準点には，標杭を用いることができる。
6 永久標識を設置した水準点については，第36条に規定する観測方法又は単点観測法により座標を求め，成果数値データファイルに記載するものとする。また，既知点の座標値を求め た場合，当該点の管理者にその取扱いを確認することができる。

一「単点観測法」は，第36条に規定するネットワーク型 R T K 法を用いて単独で測点の座標を求める。

二 単点観測法により水準点の座標を求める観測及び較差の許容範囲等は，次のとおりとす る。
イ 観測は， $2 セ ッ ト$ 行うものとする。 1 セット目の観測値を採用値とし，観測終了後，点検のための再初期化を行い2セット目の観測を行らものとする。ただし，2セット目 の観測結果は点検値とする。

ロ 観測回数及び較差の許容範囲等は，次表を参考とする。

使用衛星数	観測回数	データ取得間隔	許容範囲		備 考
5 衛星以上	F I X 解を得てから10 エポック以上を 2 セッ ト	1 秒	$\begin{aligned} & \Delta N \\ & \Delta E \end{aligned}$	100 mm	ΔN ：水平面の南北成分のセ ット間較差 ΔE ：水平面の東西成分のセ ット間較差 ただし，平面直角座標で比較 することができる。

三 成果数値データファイルには0．1メートル位まで記入するものとする。
四 水準点で直接に観測ができない場合は，偏心点を設け，T S 等により偏心要素を測定す るものとする。
（点の記の作成）

第59条 設置した永久標識については，点の記を作成するものとする。

第5節 観測

（要旨）
第60条 本章において「観測」とは，平均図等に基づき，レベル及び標尺等を用いて，関係点間の高低差を観測する作業をいう。
（機器）
第61条 観測に使用する機器は，次表に掲げるもの又はこれらと同等以上のものを標準とする。

	機		器		性	能	摘				要		
1	級	\checkmark	べ	ル	別表1による			$1 \sim 4$ 級 水 準 測 量					
2	級	レ	べ	ル			2	~ 4	級	水	準	測	
3	級	レ	ヘ	ル				$\begin{gathered} \sim 4 \\ \text { 易 } \end{gathered}$	$\begin{aligned} & \text { 級 } \\ & \text { 水 } \end{aligned}$		準 測	測 測	
1	級			尺			1	~ 4	級	水	準	測	
2	級			尺				~ 4	級	水	準	測	
	セ	－	ラ					~ 4 級	水準	測量	（洨	渡海	
	トータ	ルス	ー					~ 4 級	水準	測量	（洨	渡海	
測		距		離				～4級	水準	測量	（ 洨	渡海	
	測 量	作	用										
箱				尺			簡	易	水	準	測	測	

一 1 級水準測量では，気温 20 度における標尺改正数が $50 \mu \mathrm{~m} / \mathrm{m}$ 以下，かつ，I 号標尺と II号標尺の標尺改正数の較差が $30 \mu \mathrm{~m} / \mathrm{m}$ 以下の 1 級標尺を用いるものとする。
二 渡海（河）水準測量でレベルを使用する場合は，気泡管レベル又は自動レベルとする。 ただし，自動レベルは交互法のみとする。
2 水準測量作業用電卓は，動作の結果が正しいと確認されたものを使用するものとする。

（機器の点検及び調整）

第62条 観測に使用する機器は，適宜，点検及び調整を行うものとする。なお，観測による視準線誤差の点検調整における読定単位及び許容範囲は，次表を標準とする。

	分	級レベル	2 級レベル	3 級レベル	
読	定	単	位	0.01 mm	0.1 mm
許	容	範	囲	0.3 mm	0.3 mm
1 mm					

2 点検調整は，観測着手前に次の項目について行い，水準測量作業用電卓又は観測手簿に記録する。ただし， 1 級水準測量及び 2 級水準測量では，観測期間中おおむね 10 日ごと行うも のとする。

一 気泡管レベルは，円形水準器及び主水準器軸と視準線との平行性の点検調整を行うもの とする。

二 自動レベル，電子レベルは，円形水準器及び視準線の点検調整並びにコンペンセータの点検を行うものとする。

三 標尺付属水準器の点検を行うものとする。

（観測の実施）

第63条 観測は，水準路線図に基づき，次に定めるところにより行うものとする。
2 直接水準測量
一 観測は，標尺目盛及びレベルと後視又は前視標尺との距離（以下「視準距離」という。） を読定するものとする。
イ 視準距離及び標尺目盛の読定単位は，次表を標準とする。なお，視準距離はメートル単位で読定するものとする。

目	分	級水準測量	2 級水準測量	3 級水準測量	4 級水準測量	簡易水準測量
視 準 距 離	最大 50 m	最大 60 m	最大 70 m	最大 70 m	最大 80 m	
読 定 単 位	0.1 mm	1 mm	1 mm	1 mm	1 mm	

ロ 観測は，1視準1読定とし，標尺の読定方法は，次表を標準とする。

	1 級 水 準 測 量		2 級 水 準 測 量		$3 \sim 4$ 級水準測量簡 易 水 準 測 量
	気泡管レベル自動レベル	電子レベル	気泡管レベル自動レベル	電子レベル	気泡管レベル自 動レベル電子レベル
1	後視小目盛	後 視	後視小目盛	後 視	後 視
2	前視小目盛	前 視	後視大目盛	後 視	前 視
3	前視大目盛	前 視	前視小目盛	前 視	－
4	後視大目盛	後 視	前視大目盛	前 視	－

二 観測は，簡易水準測量を除き，往復観測とする。
三 標尺は，2本1組とし，往路と復路との観測において標尺を交換するものとし，測点数 は偶数とする。

四1級水準測量においては，観測の開始時，終了時及び固定点到着時ごとに，気温を 1 度単位で測定するものとする。

五 視準距離は等しく，かつ，レベルはできる限り両標尺を結ぶ直線上に設置するものとす る。

六 往復観測を行う水準測量において，水準点間の測点数が多い場合は，適宜固定点を設け，往路及び復路の観測に共通して使用するものとする。

八1日の観測は，水準点で終わることを原則とする。なお，やむを得ず固定点で終わる場合は，観測の再開時に固定点の異常の有無を点検できるような方法で行うものとする。

3 渡海（河）水準測量
一 観測は，交互法，経緯儀法及び俯仰ねじ法のいずれかにより行うものとする。
二 観測のセット数，読定単位等は，次表を標準とする。

$\begin{array}{\|l\|} \hline \text { 項目 } \\ \hline \end{array}$	交 互 法	経緯儀法	俯仰ねじ法
観 測 距 離（S）	300 m （ 450 m ）まで	1kmまで	2 km まで
使 用 機 器 の 性 能	1 級レベル 1 級標尺	1級トータルステーション 1級セオドライト 1級レベル，1級標尺 （2級レベル）	俯仰㸚じを有する 1級レベル 1 標尺
使用機器の数量	1 式	2 式	
観 測 条 件	－	両岸で同時観測	
目標板白線の太さ	$40 \mathrm{~mm} \times \mathrm{S}$	－	$40 \mathrm{~mm} \times \mathrm{S}$
観 測 時 間 帯	観地点の南中時前 3 時間，後 4 時間の間に行う		
セット数（ n ）	$60 \times \mathrm{S}$	$80 \times$ S	
観 測 日 数	n／ 25	$\mathrm{n} / 40$	
自岸 目標（標尺） の読定単位 対岸	0.1 mm （ 1 mm ）	1 秒	0．1mm（ 1 mm ）
	1 mm	$\begin{gathered} 1 \text { 秒 } \\ \text { 距離 }(1 \mathrm{~mm}) \end{gathered}$	俯仰ねじ目盛の $1 / 10$
自岸器械高	－	0．1mm（ 1 mm ）	－
対岸目標高	－	0.1 mm （ 1 mm ）	$0.1 \mathrm{~mm}(1 \mathrm{~mm})$
$\begin{array}{llll} \text { 高 } & \text { 度定数 } & \text { 較 } & \text { 差 } \\ \text { の } & \text { 許 } & \text { 容 } & \text { 範 } \end{array} \text { 囲 }$	－	$\begin{gathered} 5 \text { 秒 } \\ (7 \text { 秒 }) \\ \hline \end{gathered}$	－
距 離 の 測 定	－	第36条及び第 37 条を準用 する	－
観 測 方 法	自岸標尺 1 回，対岸標尺 5回，自岸標尺 1 回の順にそれ ぞれ 1 視準 1 読定行い，こ れを1セットとする。 1 日の全観測セットの $1 / 2$ を経過た時点で，レベルと標尺を対岸に移し替えて同様 の観測を行う。	対岸の観測は鉛直角観測に より行い望遠鏡右及び左の位置で 1 視準 1 読定を 1 対回とする 2 対回の観測を行 う。これを1セットとす る。 自岸の観測は対岸観測（1 セット）の前後に渡海水準点に立てた標尺の任意 2 箇所の目盛を視準し，鉛直角観測を行う。 これを両岸において，同時 に行う観測を1セットとす る。 1日のセット数は $20 ~ 60$ セ ットを標準とする。 全セッ数のほぼ中間で両岸 の器械，標尺を入れ替え同様の観測を行う。	自岸の標尺目盛を 1 視準 1読定した後に，対岸目標板下段位置，レベルの水平位置，対岸目標板上段位置の 3 箇所の俯仰ねじ目盛を読 み取り，再び，対岸目標板上段，レベルの水平位置，対岸目標板下段位置の観測 を行ら。これを両岸におい て，同時に行う観測を 1 セ ットとする。 1 日のセット数は $20 \sim 60$ セ ットを標準とする。 全セットのほぼ中間で両岸 の器械，標尺を入れ替え同様の観測を行う。
備 考	1． S は，観測距離（km単位），観測日数欄の数字は1日当たりの標準セット数とす る。 2．観測セット数及び日数の算定において，観測距離（km単位）を小数点以下 1 位まで		

4 新設点の観測は，永久標識の設置後 24 時間以上経過してから行うものとする。
（再測）
第64条 1 級水準測量， 2 級水準測量， 3 級水準測量及び 4 級水準測量の観測において，水準点及 び固定点によって区分された区間の往復観測値の較差が，許容範囲を超えた場合は，再測す るものとする。

一 往復観測値の較差の許容範囲は，次表を標準とする。

項 目	分	級水準測量	2 級水準測量	3 級水準測量	4 級水準測量
往復観測値の較差	$2.5 \mathrm{~mm} \sqrt{\mathrm{~S}}$	$5 \mathrm{~mm} \sqrt{\mathrm{~S}}$	$10 \mathrm{~mm} \sqrt{\mathrm{~S}}$	$20 \mathrm{~mm} \sqrt{\mathrm{~S}}$	
備	考	S は観測距離（片道， km 単位 $)$ とする。			

二 1 級水準測量及び 2 級水準測量の再測は，同方向の観測値を採用しないものとする。
（検測）
第65条 1 級水準測量及び 2 級水準測量においては，既知点と隣接する他の既設点間の検測を行う ものとする。なお，検測における結果と前回の観測高低差又は測量成果の高低差との較差の許容範囲は，次表を標準とする。また，検測は，片道観測を原則とする。

区分	1 級水準測量	2 級水準測量
項目		
前回の観測高低差との較差	$2.5 \mathrm{~mm} \sqrt{\mathrm{~S}}$	$5 \mathrm{~mm} \sqrt{\mathrm{~S}}$
測量成果の高低差との較差	$15 \mathrm{~mm} \sqrt{\mathrm{~S}}$	
備 考		S は観測距離（片道， km 単位）とする。

第6節 計算

（要旨）
第66条 本章において「計算」とは，新点の標高を求めるため，次に定めるところにより行うもの とする。
一 標尺補正計算及び正規正標高補正計算（楕円補正）は，1級水準測量及び 2 級水準測量つ いて行う。ただし，1級水準測量においては，正規正標高補正計算に代えて正標高補正計算（実測の重力値による補正）を用いる事ができる。また，2 級水準測量における標尺補正計算は，水準点間の高低差が 70 メートル以上の場合に行うものとし，標尺補正は，気温 20度における標尺改正数を用いて計算するものとする。

二 変動補正計算は，地盤沈下調査を目的とする水準測量について，基準日を設けて行うも のとする。

三 計算は，第63条第2項第一号イの表の読定単位まで算出するものとする。
（計算の方法）
第67条 計算は，付録 6 の計算式又はこれと同精度若しくはこれを上回る精度を有することが確認 できる場合は，当該計算式を使用することができるものとする。
（点検計算及び再測）
第68条 点検計算は，観測終了後に行うものとする。点検計算の結果，許容範囲を超えた場合は，再測を行う等適切な措置を講ずるものとする。
一 全ての単位水準環（新設水準路線によって形成された水準環で，その内部に水準路線の ないものをいう。以下同じ。）及び次の条件により選定された全ての点検路線について，環閉合差及び既知点から既知点までの閉合差を計算し，観測値の良否を判定するものとす る。
イ 点検路線は，既知点と既知点を結合させるものとする。
口 全ての既知点は，1 つ以上の点検路線で結合させるものとする。
八 全ての単位水準環は，路線の一部を点検路線と重複させるものとする。
二 点検計算の許容範囲は，次表を標準とする。

区 分項	1 級水準測量	2 級水準測量	3 級水準測量	4 級水準測量	簡易水準測量
環 閉 合 差	$2 \mathrm{~mm} \sqrt{\text { S }}$	$5 \mathrm{~mm} \sqrt{\text { S }}$	$10 \mathrm{~mm} \sqrt{\text { S }}$	$20 \mathrm{~mm} \sqrt{\text { S }}$	$40 \mathrm{~mm} \sqrt{\text { S }}$
既知点から既知点ま で の 閉 合 差	$15 \mathrm{~mm} \sqrt{\text { S }}$	$15 \mathrm{~mm} \sqrt{\text { S }}$	$15 \mathrm{~mm} \sqrt{\text { S }}$	$25 \mathrm{~mm} \sqrt{\text { S }}$	$50 \mathrm{~mm} \sqrt{\text { S }}$
備 考	S は観測距離（片道，km単位）とする。				

2 点検計算の結果は，精度管理表にまとめるものとする。
（平均計算）
第69条 平均計算は，次により行うものとする。
一 直接水準測量の平均計算は，距離の逆数を重量とし，観測方程式又は条件方程式を用い て行うものとする。
二 直接水準測量と渡海（河）水準測量が混合する路線の平均計算は，標準偏差の二乗の逆数を重量とし，観測方程式又は条件方程式により行うものとする。
三 平均計算による許容範囲は，次表を標準とする。

区 分	1 級水準測量	2 級水準測量	3 級水準測量	4 級水準測量	簡易水準測量
単位重量当たりの 観測の標準偏差	2 mm	5 mm	10 mm	20 mm	40 mm

2 平均計算に使用するプログラムは，計算結果が正しいと確認されたものを使用するものと する。
3 平均計算の結果は，精度管理表にまとめるものとする。

第7節 品質評価
（品質評価）
第70条 水準点成果の品質評価は，第43条の規定を準用する。

第8節 成果等の整理

（メタデータの作成）
第71条 水準点成果のメタデータの作成は，第44条の規定を準用する。
（成果等）
第72条 成果等は，次の各号のとおりとする。ただし，作業方法によっては，この限りでない。
一 観測手簿
二 観測成果表及び平均成果表
三 水準路線図
四 計算簿
五 平均図
六 点の記
七 成果数値データ
八 建標承諾書
九 測量標設置位置通知書
十 測量標の地上写真
十一 基準点現況調査報告書
十二 精度管理表
十三 品質評価表
十四 点検測量簿
十五メタデータ
十六その他の資料

第4章 GNS S測量機による水準測量

第1節要旨

（要旨）
第73条 「GNS S 測量機による水準測量」とは，既知点に基づき，GNSS測量機を用いて，新設 する水準点の標高を定める作業をいう。
2 GNSS測量機による水準測量は，本章で規定する既知点の種類，既知点間の路線長，観測の精度等により 3 級水準測量とし，設置される水準点の区分は第 46 条第 3 項に準ずるもの とする。
3 GNS S 測量機による水準測量の適用範囲は，ジオイド・モデルの提供地域とする。
（既知点の種類）
第74条 既知点の種類は，次表を標準とする。

区 分 項 目	3 級水準測量
既知点の種類	一～二等水準点 電子基準点（「標高区分：水準測量による」に限る） $1 \sim 2$ 級水準点

（G N S S 測量機による水準測量の方式）
第75条 G N S S 測量機による水準測量の作業方法は，次表を標準とする。

区 分 項 目	条 件 等
	3 級水準測量
測 量 方 式	結合多角方式
	地形の状況等によりやむを得ないときは，単路線方式とすること ができる。
既 知 点 数	3点以上
	単路線方式の場合は，2点とすることができる。
路 線の辺 数	6 辺以下
	6 km 以上，かつ，40km以下
観 測 距 離	1．新点間距離も対象とする。 2．既知点から新点又は新点から新点の距離が 6 km 未満の場合 は，第49条第一号に規定する直接水準測量方式による 3 級水準測量で行うものとする。
路 線 長	60km以下
路 線 図 形	新点は，外周路線に属する隣接既知点を結ぶ直線の内側に選点す るものとする。ただし，地形の状況によりやむを得ないときは， この限りでない。
観測楕円体比高	700 m 以下を標準とする。なお， 700 m を超える場合は日を変えて点検観測を行うものとする。
偏心距離の制限	既知点 500 m 未満
	新 点 $250 \mathrm{m未}$ 満
備 考	1．「路線の辺数」は，既知点から他の既知点まで，既知点から交点まで又は交点から他の交点までを対象とする。 2．「路線長」は，既知点から他の既知点までを構成する基線長 の合計をいう。 3．観測楕円体比高が 700 m を超える等の誤差要因となる可能性が高い観測点においては，点検観測を行い，良否を判定するもの とする。なお，点検観測は，点検測量を兼ねることができるも のとする。

（工程別作業区分及び順序）
第76条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 選点
三 測量標の設置
四 観測
五 計算
六 品質評価
七 成果等の整理

第2節 作業計画

（要旨）
第77条 作業計画は，第10条の規定によるほか，地形図上で新点の概略位置を決定し，平均計画図 を作成するものとする。

第3節 選点
（要旨）
第78条 本章において「選点」とは，平均計画図に基づき，現地において既知点（電子基準点を除 く。）の現況を調査するとともに，新点の位置を選定し，選点図及び平均図を作成する作業 をいう。
（既知点の現況調査）
第79条 既知点の現況調査は，異常の有無等を確認し，基準点現況調査報告書を作成するものとす る。
（新点の選定）
第80条 新点は，後続作業における利用等を考慮し，適切な位置に選定するものとする。

（建標承諾書等）

第81条 計画機関が所有権又は管理権を有する土地以外の土地に永久標識を設置しようとするとき は，当該土地の所有者又は管理者から建標承諾書等により承諾を得なければならない。
（選点図及び平均図等の作成）
第82条 新点の位置を選定したときは，その位置及び路線等を地形図に記入し，選点図を作成する ものとする。

2 平均図は，選点図に基づいて作成する。ただし，平均図は計画機関の承認を得るものとす る。

第4節 測量標の設置

（要旨）
第83条 本章において「測量標の設置」とは，新設点の位置に永久標識を設ける作業をいう。

（永久標識の設置）

第84条 新設点の位置には，原則として，永久標識を設置し，測量標設置位置通知書を作成するも のとする。
2 永久標識の規格及び設置方法は，付録 5 によるものとする。
3 設置した永久標識については，写真等により記録するものとする。
4 永久標識には，必要に応じ固有番号等を記録したICタグを取り付けることができる。
5 永久標識を設置した水準点については，第 95 条に規定する三次元網平均計算で求めた座標 を成果数値データファイルに記載するものとする。
一 記載は，0．1メートル位まで記入するものとする。
二 偏心点を設けた場合の本点の座標は，第58条に規定する測定方法により求めるものとする。

（点の記の作成）

第85条 設置した永久標識については，点の記を作成するものとする。
2 点の記の備考欄には「GNSS測量機による水準測量」と記入するものとする。

第5節 観測

（要旨）
第86条 本章において「観測」とは，平均図等に基づき，GNSS観測により，関係点間の高低差 を観測する作業をいう。
（機器）
第87条 観測に使用する機器は，次表に掲げるもの又はこれらと同等以上のものを標準とする。

機 器	性 能	摘 要
1 級GNS S 測量機	別表1による	－
2 級GNS S 測量機		観測距離が 10 km 未満の場合に使用できる。
3 級レベル		偏心要素の測定
2 級標尺		
鋼巻尺	JIS 1 級	－

（機器の点検及び調整）
第88条 観測に使用する機器の点検は，観測着手前及び観測期間中に適宜行い，必要に応じて機器 の調整を行うものとする。
（GNSS観測の実施）

第89条 G N S S 観測に当たり，計画機関の承認を得た平均図に基づき，観測図を作成するものと する。

2 G N S S 観測は，平均図等に基づき，第36条第2項第二号リ（1）に規定するスタティッ ク法により行う。
一 G N S S 観測の方法は，次表を標準とする。

項 目	区 分	条 件 等
		3 級水準測量
	測 時 間	5 時間以上
データ取得間隔		30 秒以下
最 低 高 度 角		15 度を標準
アンテナ高測定単位		mm
使用衛星数	G P S • 準天頂衛星	5 衛星以上
	G P S •準天頂衛星及びG L O N A S S 衛星	6 衛星以上
	啇 要	1．G N S S 衛星の稼働状態，飛来情報等を考慮 し，片寄った配置の使用は避けるものとする。 2．G L O N A S S 衛星を用いて観測する場合は， G P S 衛星及びGLONASS衛星を，それぞれ 2 衛星以上を用いること。 3．電子基準点を使用する場合は，事前に稼働状況 を確認するものとする。 4．観測距離が 10 km 以上の観測は， 1 級 G N S S 測量機により 2 周波で行う。 10 km 未満の観測は 2 級以上の性能を有するGNS S 測量機により行う。 ただし，1級GNSS測量機による場合は 2 周波 で行うものとする。

二 アンテナ高（電子基準点を除く。）の測定は，次のとおりとする。
イ 鋼巻尺で標識上面からG N S S アンテナ底面までの距離を垂直に測定することを標準 とする。
口 測定は，観測前と観測後に各 2 回行うものとする。
八 測定の許容範囲は，次のとおりとする。
（1）観測前と観測後の 2 回測定の較差は 3 ミリメートル以内とする。
（2）観測前の平均値と観測後の平均値の較差は3ミリメートル以内とする。
ニ アンテナは，観測前後 4 回の測定値の平均値とする。
三 作業地域の気象条件等が次のようなときは，原則としてGNSS観測を行わないものと する。
イ 台風又は熱帯低気圧が接近又は通過しているとき。

ロ 寒冷前線•温暖前線等が接近又は通過しているとき。
八 積乱雲の急速な発達や集中豪雨が予測されるとき。
ニ その他，大気遅延の影響を大きく受けると予測されるとき。

（観測値の点検及び再測）

第90条 観測値について点検を行い，G N S S 観測の基線解析結果でFIX解を得られない場合 は，再測するものとする。

（偏心要素の測定）

第91条 偏心点を設けた場合は，偏心要素である本点と偏心点間の高低差を測定するものとする。
2 偏心要素の測定は，次表を標準とし，許容範囲を超えた場合は再測するものとする。

偏心距離	3 級水準測量		
	機器及び測定方法	測定単位	点検項目及び許容範囲
100 m 未満	レベル等による水準測量のらち 3 級水準測量に準じて測定す る。ただし，後視及び前視に同一標尺を用いて観測する場合 は，往路及び復路の測点数を1点とすることができる。	mm	往復の較差 3 mm
100 m 以上 250 m 未満	レベル等による水準測量のらち 3 級水準測量に準じて測定す る。	mm	往復の較差 5 mm
250 m 以上 500 m 未満	レベル等による水準測量のうち 3 級水準測量に準じて測定す る。	mm	往復の較差 $10 \mathrm{~mm} \sqrt{\mathrm{~S}}$ $\mathrm{~S}:$ 測定距離（片道，km 単位）

3 既知点及び新点に偏心点を設けた場合の計算は，次のとおり行うものとする。
一 偏心点（既知点）の緯度，経度及び標高は次の方式により求めるものとする。
イ 標高は，本点（既知点）の標高に偏心要素を加えるものとする。
ロ 緯度及び経度は，偏心点（既知点）からも近い電子基準点との基線解析により求める ものとする。
二 偏心点（既知点）の楕円体高は，当該偏心点の標高に，前号口により求めた緯度及び経度によるジオイド・モデルより求めたジオイド高を加えるものとする。

三 本点（新点）の標高は，第95条の三次元網平均計算で求めた偏心点（新点）の標高に偏心要素を加えるものとする。

第6節 計算
（要旨）

第92条 本章において，「計算」とは，新点の標高を求めるため，関連する諸要素の計算及び成果表等の作成 を行うことをいう。
（計算の方法等）
第93条 計算は，付録 6 の計算式又はこれと同精度若しくはこれを上回る精度を有することが確認 できる場合は，当該計算式を使用することができるものとする。

2 計算結果の表示単位等は，次表のとおりとする。

表示 項目	標 高	ジオイド高	楕円体高	経 緯 度
単 位	m	m	m	秒
位	0.001	0.001	0.001	0.0001

3 G N S S 観測における基線解析は，次の各号により実施することを標準とする。
一 計算結果の表示単位等は，次表のとおりとする。

項 目	基線ベクトル成分
単 位	m
位	0.001

二 G N S S 衛星の軌道情報は，放送暦を標準とする。
三 基線解析では，原則としてPCV補正を行うものとする。
四 気象要素の補正は，基線解析ソフトウェアで採用している標準大気によるものとする。
五 基線解析は，基線長が10キロメートル以上の場合は 2 周波で行うものとし，基線長が 10 キロメートル未満の場合は1周波又は 2 周波で行らものとする。

六 基線解析の固定点の緯度，経度及び楕円体高は，次の方法により求めた値とする。
イ 固定点に電子基準点を使用する場合
（1）緯度及び経度は，当該電子基準点の成果表の値を使用する。
（2）楕円体高は，電子基準点の成果表の標高に，ジオイド・モデルより求めたジオイ ド高を加えた値を使用する。
ロ 固定点に電子基準点以外の既知点を使用する場合
（1）緯度及び経度は，既知点からも近い電子基準点の成果表の値を用いて，当該電子基準点との基線 解析により求められた値を使用する。
（2）楕円体高は，既知点の成果表の標高に，（1）より得られた緯度及び経度を用い て，ジオイド・モデルより求めたジオイド高を加えた値を使用する。

七 基線解析に使用するGNSS測量機の高度角は，観測時に設定した受信高度角とする。
八 基線解析に使用するGNSS観測データは5時間以上とし，データ取得間隔は30秒以下 とする。

第94条 点検計算は，観測終了後，次により行うものとする。点検計算の結果，許容範囲を超えた場合は，再測を行う等適切な措置を講ずるものとする。

2 観測値の点検は，次の各号により行うものとする。
一 観測データの点検は，前半の 2 時間 30 分以上及び後半の 2 時間 30 分以上に分けて基線解析を行い，基線ベクトルの較差を比較するものとする。ただし，観測楕円体比高が 700 メー トルを超える基線については，次項の点検観測を行い観測値の点検を行うものとする。
二 楕円体高の閉合差の点検は，次のイ又はロのいずれかの方法により行うものとする。
イ 既知点間を結合する路線で，次の条件により点検する方法
（1）全ての既知点は，1 つ以上の点検路線で結合させるものとする。
（2）結合計算に用いる楕円体比高は，5時間以上のデータを使用した基線解析による値を使用する。
（3）既知点の楕円体高は，前条第3項第六号に規定するものを使用する。
（4）楕円体高の閉合差は，（2）の楕円体比高と（3）により得られた楕円体比高の差とる。
口 既知点 1 点を固定する仮定三次元網平均計算結果から求めた楕円体高により点検する方法
（1）既知点の緯度，経度及び楕円体高は，前条第3項第六号に規定するものを使用す る。
（2）基線ベクトルは， 5 時間以上のデータを使用した基線解析による値を使用する。
（3）重量（P）は，基線解析により求められた分散•共分散行列の逆行列を用いるも のとする。ただし，全ての基線の解析手法，解析時間が同じでない場合は，水平及 び高さの分散の固定値を用いるものとする。なお，分散の固定値は， $\mathrm{d}_{\mathrm{N}}=(0.004$ $\mathrm{m})^{2} \mathrm{~d}_{\mathrm{E}}=(0.004 \mathrm{~m})^{2} \mathrm{~d}_{\mathrm{U}}=(0.007 \mathrm{~m})^{2}$ とする。
3 観測楕円体比高が 700 メートルを超えたときの点検観測については，次の各号により行うも のとする。

一 観測時間は5時間以上とし，基線解析は，前条第3項に基づき行うものとする。
二 前号による基線ベクトルと採用する基線ベクトルの較差を比較するものとする。
4 点検計算における許容範囲は，次表のとおりとする。

項 目 区 分		許容範囲	備
		3 級水準測量	
基線ベクトルの較	水平 $(\Delta N, ~ \Delta E)$	20 mm	$\Delta N:$ 水平面の南北成分の較差 $\Delta E:$ 水平面の東西成分の較差 ΔU ：高さ成分の較差 （前項第二号にも適用）
	高さ（ ΔU ）	40 mm	
既知点間の楕円体高の閉合差		$15 \mathrm{~mm} \sqrt{\text { S }}$	S ：路線長（km 単位）
仮定三次元網平均計算における楕 円 体 高 の閉合差		$15 \mathrm{~mm} \sqrt{\text { S }}$	S：路線長（km 単位）
仮定三次元網平均計算における		20 mm	

5 点検計算の結果は，精度管理表にとりまとめるものとする。

（三次元網平均計算）

第 95 条 既知点 2 点以上を固定する三次元網平均計算は，平均図に基づき行らものとし，次のとお りとする。
一 既知点の緯度，経度及び楕円体高は，前条第2項第二号口（1）の規定を準用する。
二 基線ベクトルは，前条第2項第二号口（2）の規定を準用する。
三 重量（P）は，前条第2項第二号口（3）の規定を準用する。
四 新点の標高は，ジオイド・モデルにより求めたジオイド高を用いて，三次元網平均計算 より求めた楕円体高を補正する。
五 第93条第3項第六号口の規定により基線解析を行った場合の三次元網平均計算は，次の とおり行うことができるものとする。
ィ 電子基準点以外の既知点（水準点）は，棈円体高のみを固定する。
口 既知点（水準点）からも近い電子基準点は，緯度及び経度のみを固定する。
六 三次元網平均計算による許容範囲は，次表を標準とする。

項 目	分
	許容範囲
斜距離の残差	3級水準測量

2 三次元網平均計算に使用するプログラムは，計算結果が正しいものと確認されたものを使用するものとする。
3 三次元網平均計算の結果は，精度管理表にとりまとめるものとする。

第7節 品質評価

（品質評価）
第96条 水準点成果の品質評価は，第43条の規定を準用する。

第8節 成果等の整理

（メタデータの作成）
第 97 条 水準点成果のメタデータの作成は，第44条の規定を準用する。
（成果等）
第98条 成果等は，次の各号のとおりとする。ただし，作業方法によっては，この限りでない。
一 観測手簿
二 観測記簿
三 計算簿

四 平均図
五 水準点成果表
六 点の記
七 建標承諾書
八 測量標設置位置通知書
九 網図等（基準点網図，水準路線図）
十 精度管理表
十一 品質評価表
十二 測量標の地上写真
十三 基準点現況調査報告書
十四 成果数値データ
十五 点検測量簿
十六 メタデータ
十七 その他の資料

第5章 復旧測量
（要旨）
第99条 「復旧測量」とは，公共測量によって設置した基準点及び水準点の機能を維持するととも に保全するために実施する作業をいう。
2 本章において，「旧点」とは復旧前の点を，「新点」とは復旧後の点をいう。

（復旧測量の作業区分）

第100条 復旧測量の作業区分及び作業内容は，次のとおりとする。
一「再設」とは，標識が亡失している場合に，再設置することをいう。
二「移転」とは，標識の現位置が保存上又は管理上不適当である場合に，当該標識の位置 を変えて設置することをいう。
三「改測」とは，測量成果が現況に適合しなくなったと判断した場合に，現位置を変える ことなく測量を行い，必要に応じてその測量成果を修正することをいう。
四「改算」とは，測量成果が現況に適合しなくなったと判断した場合に，改測を行わずに過去の観測値，資料等を用いて計算を行い，必要に応じて測量成果を修正することをいう。
2 再設，移転等を行った場合は，測量標新旧位置明細書を作成するものとする。
（基準点の復旧測量）
第101条 基準点の復旧測量は，再設，移転，改測又は改算により行うものとする。
2 再設，移転，改測又は改算による基準点の復旧測量には，第2章の規定を準用する。ただ し， 3 級基準点及び 4 級基準点の復旧測量に使用する既知点は，厳密水平網平均計算及び厳密高低網平均計算又は三次元網平均計算により設置された同級の基準点を既知点とすること ができる。
3 移転による基準点の復旧測量は，次に定める方法により実施するものとする。

一 T S 等による偏心法
イ 方向角を求めるための水平角観測に使用する既知点は，隣接の同級以上の基準点とす る。
ロ 既知点の点検のため，既知点と移転する基準点間の高低差又は辺長の観測を行うもの とする。

二 GNSS観測による偏心法
イ 第36条第2項第二号に定める観測方法のうち，スタティック法により，新点と旧点と の移転量を求めるものとする。
ロ 移転量の点検として，観測時間を前後半に分けた基線解析を行い，基線ベクトルの較差を点検する。全観測時間を用いて算出された移転量と前後半に分けた点検計算の各々 の較差の許容範囲は，次表を標準とする。

項 目		許容範囲	備 考
基線ベクトルの較差	$\begin{aligned} & \Delta N \\ & \Delta E \\ & \Delta U \end{aligned}$	20 mm 30 mm	ΔN ：水平面の南北成分の較差 ΔE ：水平面の東西成分の較差 $\Delta U:$ 水平面からの高さ成分の較差 ただし，平面直角座標値で比較することが できる。

4 地殻変動その他の事由により，基本測量の測量成果が修正された場合には，修正された基本測量成果を基に改算するものとする。この場合，改算は，現況に適合しなくなった成果が適切な計算処理で修正可能であることを確認の上，行らものとする。なお，国土地理院から座標及び標高補正パラメータファイルが提供された場合には，この補正パラメータを用いて成果を改算することができる。
（水準点の復旧測量）
第102条 水準点の復旧測量は，再設，移転又は改測により行うものとする。
2 再設，移転又は改測による水準点の復旧測量には，第3章及び第4章の規定を準用する。
3 移転による水準点の復旧測量は，次に定める方法により実施するものとする。
一 直接法
イ 新点に別の標識を埋設し，旧点と新点間について往復観測を行う。なお，旧点と新点間の観測を1点の測点数で行える場合は，前視，後視に同一標尺を用いて往路及び復路 の測点数を 1 点とすることができる。
ロ 往復観測値の較差の許容範囲は，次表を標準とする。

項目	区分	1 級水準点	2 級水準点	3,4 級水準点
往復観測値の較差	$5 \mathrm{~mm} \sqrt{\mathrm{~S}}$	$5 \mathrm{~mm} \sqrt{\mathrm{~S}}$	$20 \mathrm{~mm} \sqrt{\mathrm{~S}}$	
読	定	単	位	1 mm
備		考	S は観測距離（片道， km 単位）とする。	

二 固定点法

イ 旧点と新点間に 3 点以上の固定点を設け，旧点と固定点間について往復観測を行うも のとする。

ロ 旧点の標識を新点の位置に埋設するものとする。
八 埋設後 24 時間以上経過後，固定点と新点間について往復観測を行うものとする。
ニ 固定点を経由して求めた各標高の較差の許容範囲は，次表を標準とする。

項目	区分	1級水準点	2 級水準点	3,4 級水準点
標 高 の 較 差	3 mm	3 mm	10 mm	
読	定 単	位	1 mm	1 mm
1 mm				

ホ 許容範囲を超えた場合は，その原因を調査し，較差の少ない 2 個以上の平均値を採用 するものとする。

第3編 地形測量及び写真測量

第1章 通則
第1節 要旨
（要旨）
第103条 本編は，地形測量及び写真測量の作業方法等を定めるものとする。
2 「地形測量及び写真測量」とは，数値地形図データ等を作成又は修正する作業をいい，地図編集を含むものとする。
3 「数値地形図データ」とは地形，地物等の位置，形状を表す座標データ及びその内容を表 す属性データ等を，計算処理が可能な形態で表現したものをいう。

第2節 製品仕様書の記載事項

（製品仕様書）

第104条 製品仕様書は，当該地形測量及び写真測量の概覧，適用範囲，データ製品識別，データの内容及び構造，参照系，データ品質，データ製品配布，メタデータ等について体系的に記載 するものとする。

（数値地形図データの精度）

第105条 数値地形図データの位置精度及び地図情報レベルは，次表を標準とする。

地図情報レベル	水平位置の標準偏差	標高点の標準偏差	等高線の標準偏差
250	0.12 m 以内	0.25 m 以内	0.5 m 以内
500	0.25 m 以内	0.25 m 以内	0.5 m 以内
1000	0.70 m 以内	0.33 m 以内	0.5 m 以
2500	1.75 m 以内	0.66 m 以内	1.0 m 以内
5000	$3.50 \mathrm{m以内}$	1.66 m 以内	$2.5 \mathrm{m以内}$
10000	7.00 m 以	3.33 m 以内	$5.0 \mathrm{m以内}$

2 「地図情報レベル」とは，数値地形図データの地図表現精度を表し，数値地形図における図郭内のデータの平均的な総合精度を示す指標をいう。
3 地図情報レベルと地形図縮尺の関係は，次表のとおりとする。

地図情報レベル	相当縮尺
250	$1 / 250$
500	$1 / 500$
1000	$1 / 1,000$
2500	$1 / 2,500$
5000	$1 / 5,000$
10000	$1 / 10,000$

第3節 測量方法

（要旨）
第106条 製品仕様書で定めた数値地形図データ等を作成するための測量方法は，第2章から第12章までの規定に示す方法に基づき実施するものとする。

第4節 図式

（図式）
第107条 数値地形図データの図式は，目的及び地図情報レベルに応じて適切に定めるものとする。
2 地図情報レベル 250 の場合は，付録 7 の地図情報レベル 500 を準用することを標準とする。
3 地図情報レベル500から5000までの場合は，付録 7 を標準とする。
4 地図情報レベル 10000 は基本測量における 1 万分 1 地形図図式を標準とする。
5 地図情報レベルごとの地図項目の取得分類基準，数値地形図データのファイル仕様，数値地形図データファイル説明書，分類コード等は，付録 7 を使用することができる。
6 多言語による表記を行う場合は，付録 8 を標準とする。

第2章 現地測量
第1節 要旨
（要旨）
第108条 「現地測量」とは，現地においてT S 等又はGNSS測量機を用いて，又は併用して，地形，地物等を測定し，数値地形図データを作成する作業をいう。
（準拠する基準点）
第109条 現地測量は，4級基準点，簡易水準点又はこれと同等以上の精度を有する基準点に基づい て実施するものとする。
（数値地形図データの地図情報レベル）
第110条 現地測量により作成する数値地形図データの地図情報レベルは，原則として1000以下とし 250，500及び1000を標準とする。
（工程別作業区分及び順序）
第111条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 基準点の設置
三 細部測量
四 数値編集
五 補備測量
六 数値地形図データファイルの作成
七 品質評価
八 成果等の整理

（機器及びシステム）

第112条 T S 等又はGNS S 測量機を用いて実施する現地測量に使用する機器及びシステムは，次表に掲げるもの又はこれと同等以上のものを標準とする。

機 器	性 能	読取範囲
3 級トータルステーション	別表1による。	－
2 級 G N S S 測量機		
3 級セオドライト		
測距儀		
3 級レベル		
2 級標尺		
デジタイザ	$\begin{array}{ll}\text { 分解能 } & 0.1 \mathrm{~mm} \text { 以内 } \\ \text { 読取精度 } & 0.3 \mathrm{~mm} \text { 以内 }\end{array}$	計測基図の図郭内の読取 りが可能なこと
スキャナ	$\begin{array}{ll}\text { 分解能 } & 0.1 \mathrm{~mm} \text { 以内 } \\ \text { 読取精度 } & 0.25 \% \text { 以内（任意の } 2 \text { 点間）}\end{array}$	計測基図の図郭内の読取 りが可能なこと
自動製図機（プリンタ等）	描画精度 0.1 mm 以内 置精度 0.2 mm 以内 位	－
図形編集装置	電子計算機及びスクリーンモニター，構成されるもの。	要に応じてデジタイザで

第2節 作業計画
（要旨）
第113条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。

第3節 基準点の設置

（要旨）
第114条 「基準点の設置」とは，現地測量に必要な基準点を設置する作業をいう。
2 基準点の配点密度は，既設点を含め，次表を標準とする。ただし，長狭な地域については，延長と幅を考慮し，配点密度を定めるものとする。

$10,000 \mathrm{~m}^{2}$ 当たりの配点密度					
地 域地図情報レベル	市街地	市街地近郊	山 地	耕	地
250	7 点	6 点	7 点	5	点
500	6 点	5 点	6 点	4	点
1000	5 点	4 点	4 点	3	点

3 基準点の設置については，第 2 編の規定を準用する。

第4節 細部測量

（要旨）
第115条 本章において「細部測量」とは，基準点又は次条第1項のTS点にTS等又はGNSS測量機を整置し，地形，地物等を測定し，数値地形図データを取得する作業をいう。
2 細部測量における地上座標値は，ミリメートル位とする。
3 細部測量は，次のいずれかの方法を用いるものとする。
一 オンライン方式 携帯型パーソナルコンピュータ等の図形処理機能を用いて，図形表示 しながら計測及び編集を現地で直接行う方式（電子平板方式を含む）
二 オフライン方式 現地でデータ取得だけを行い，その後取り込んだデータコレクタ内の データを図形編集装置に入力し，図形処理を行う方式

第1款 T S 点の設置
（T S 点の設置）
第116条 地形，地物の状況により，基準点にT S 等又はGNS S 測量機を整置して細部測量を行う ことが困難な場合は，T S 点を設置することができる。
2 T S 点の精度は，次表を標準とする。

地図情報レベル	水平位置 （標準偏差）	標 （標準偏差）
500	100 mm 以	100 mm 以内
1000	100 mm 以内	100 mm 以内
2500	$200 \mathrm{mm以内}$	$200 \mathrm{mm以内}$

3 標高の測定は，必要に応じて水準測量により行うことができる。
（T S 等を用いるTS点の設置）
第117条 T S 等を用いるTS点の設置は，基準点にTS等を整置し，観測は第36条2項第一号の4級基準点測量の規定を準用して放射法または同等の精度を確保できる方法（以下「放射法等」 という）により行うものとする。
（キネマティック法又はR T K 法によるT S 点の設置）
第118条 キネマティック法又はR T K 法によるT S 点の設置は，基準点にGNS S 測量機を整置し，放射法により行うものとする。
2 観測は，2セット行うものとする。セット内の観測回数及びデータ取得間隔等は，次項を標準とする。 1 セット目の観測値を採用値とし，観測終了後に再初期化をして，2セット目 の観測を行い，2セット目を点検値とする。

3 観測の使用衛星数及び較差の許容範囲等は，次表を標準とする。

使用衛星数	観測回数	データ取得間隔	許容範囲		摘	要
5 衛星以上	F I X解を得て から10エポック以上	1 秒 （ただし，キネ マティツク法は 5 秒以下）	$\begin{aligned} & \Delta N \\ & \Delta E \end{aligned}$	20mm	$\Delta N: \text { 水平再 }$ ット間較差	南北成分のセ
			ΔU	30 mm	ΔE ：水平面 ット間較差 ΔU ：水平面 のセット間較 ただし，平面 することがて	東西成分のセ らの高さ成分角座標で比較 る。
摘 要	G L O N A S S 衛星を用いて観測する場合は，使用衛星数は 6 衛星以上とする。ただ し，G P S •準天頂衛星及びG L O N A S S 衛星を，それぞれ 2 衛星以上を用いるこ と。					

4 標高を求める場合は，ジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正して求めるものとする。
（ネットワーク型 R T K 法によるTS点の設置）
第119条 ネットワーク型 R T K 法によるT S 点の設置は，間接観測法又は単点観測法により行うも のとする。
2 観測は，前条第2項の規定を準用する。
3 観測の使用衛星数及び較差の許容範囲等は，前条第3項の規定を準用する。
4 単点観測法による場合は，作業地域周辺の既知点において単点観測法により，整合を確認 するものとする。なお，整合の確認及び方法は，次のとおりとする。
一 整合の確認は，次のとおり行うものとする。
イ 整合を確認する既知点は，作業地域の周辺を囲むように配置する。
ロ 既知点数は，3点以上を標準とする。
八 既知点での観測は，第2項及び第3項の規定を準用する。
二 既知点成果値と観測値で比較し，許容範囲内で整合しているかを確認する。
二 整合していない場合は，次の方法により整合処理を行うものとする。
イ 水平の整合処理は，座標補正として次により行うものとする。
（1）平面直角座標で行うことを標準とする。
（2）補正手法は適切な方法を採用する。 ロ 高さの整合処理は，標高補正として次により行うものとする。
（1）標高を用いることを標準とする。
（2）補正手法は適切な方法を採用する。
三 座標補正の点検は，水平距離と標高差（標高を補正した場合）について，次のとおり行 うものとする。
イ 単点観測法により座標補正に使用した既知点以外の既知点で観測を行い，座標補正を

行った測点の単点観測法による観測値との距離を求める。
ロ イの単点観測法により観測を行ら既知点の成果値と，イの座標補正を行った測点の補正後の座標値から距離を求める。
ハ イとロの較差により点検を行う。較差の許容範囲は次表を標準とする。

点検距離	許容範囲
500 m 以上	点検距離の $1 / 10,000$
500 m 未満	50 mm

5 標高を求める場合は，ジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正して求めるものとする。

第2款 地形，地物等の測定
（要旨）
第120条 地形，地物等の測定は，基準点又はTS点にTS等又はGNSS測量機を整置し，地形，地物等の水平位置及び必要に応じて標高を求めるものとする。
2 地形，地物等の測定精度は，地図情報レベルに 0.3 ミリメートルを乗じた値とし，標高の測定精度は主曲線間隔の 4 分の 1 以内とする。
（TS等を用いる地形，地物等の測定）
第121条 T S 等を用いる地形，地物等の測定は，基準点又はTS点にTS等を整置し，放射法等に より行らものとする。
2 標高の測定については，必要に応じて水準測量により行うことができる。
3 基準点又は T S 点から地形，地物等の測定は次のとおりとする。
一 地形は，地性線及び標高値を測定し，図形編集装置によって等高線描画を行うものとす る。
二 標高点の密度は，地図情報レベルに 4 センチメートルを乗じた値を辺長とする格子に 1点を標準とし，標高点の数値はセンチメートル位で表示するものとする。
三 細部測量では，地形，地物等の測定を行らほか，編集及び編集した図形の点検に必要な資料（以下本編において「測定位置確認資料」という。）を作成するものとする。
四 測定位置確認資料は，編集時に必要となる地名，建物等の名称のほか，取得したデータ の結線のための情報等とし，次のいずれかの方法により作成するものとする。
イ 現地において図形編集装置に地名，建物の名称，結線情報等を入力する方法
ロ 写真等で現況等を記録する方法
4 取得した数値地形図データについて，編集後に重要事項を確認するとともに必要部分を現地において測定するものとする。
5 測定した座標値等には，その属性を表すために原則として，次項に示す分類コードを付す ものとする。
6 分類コードは付録 7 の数値地形図データ取得分類基準を標準とし，適宜略コード等を使用

することができる。ただし，略コード等を用いた場合は，数値編集において数値地形図デー夕取得分類基準に変更しなければならない。
7 地形，地物等の測定終了後に，データ解析システムにデータを転送し，計算機の画面上で編集及び点検を行うものとする。
8 地形，地物等の測定は，次表を標準とする。

地図情報レベル	機 器	水平角観測対回数	距 離測定回数	測定距離の許容範囲
500以下	2 級トータルステーション 3 級トータルステーション	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 150 \mathrm{~m} \\ & 100 \mathrm{~m} \end{aligned}$
1000以上	$\begin{aligned} & 2 \text { 級トータルステーション } \\ & 3 \text { 級トータルステーション } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	1	$\begin{aligned} & 200 \mathrm{~m} \\ & 150 \mathrm{~m} \end{aligned}$
備 考	ノンプリズム測距機能を有し，ノンプリズムによる公称測定精度が 2 級短距離型測距儀の性能を有する場合は，反射鏡を使用しないで測定すること ができる。			

（キネマティック法又はR T K 法による地形，地物等の測定）
第122条 キネマティック法又はRTK法による地形，地物等の測定は，基準点又はT S 点にGNS S 測量機を整置し，放射法により行うものとする。
2 地形，地物等の測定は，前条第 2 項から第 7 項までの規定を準用する。
3 観測は， 1 セット行うものとし，観測の使用衛星数及びセット内の観測回数等は，次表を標準とする。

| 使用衛星数 | 観 測 回 数 | データ取得間隔 |
| :---: | :--- | :--- |$|$| 1 秒（ただし，キネマティック法は |
| :--- |
| 5 秒以下） |

4 初期化を行う観測点では，次の方法で観測値の点検を行い，次の観測点に移動するものと する。
一 点検のために 1 セットの観測を行うこと。ただし，観測は観測位置が明確な標杭等で行 らものとする。
二 1 セットの観測終了後に再初期化を行い，2セット目の観測を行うものとする。
三 再初期化した 2 セット目の観測値を採用値として観測を継続するものとする。
四 2 セットの観測による点検に代えて，既知点で 1 セットの観測により点検することがで きる。

5 許容範囲等は，次表を標準とする。

項 目		許容範囲	備 考
セット間較差	$\begin{aligned} & \Delta N \\ & \Delta E \end{aligned}$	20 mm	$\Delta N:$ 水平面の南北成分のセット間較差 $\Delta E:$ 水平面の東西成分のセット間較差
	ΔU	30 mm	$\Delta U:$ 水平面からの高さ成分のセット間較差 ただし，平面直角座標値で比較することができ る。

6 観測の途中で再初期化する場合は，第4項の観測を行うものとする。
7 標高を求める場合は，ジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正して求めるものとする。
（ネットワーク型 R T K による地形，地物等の測定）
第123条 ネットワーク型 R T K 法による地形，地物等の測定は，間接観測法又は単点観測法により行らものとする。
2 地形，地物等の測定は，第121条第2項から第7項までの規定を準用する。
3 観測は，1セット行らものとし，観測及び許容範囲等は，前条第 3 項から第 6 項までの規定 を準用する。
4 単点観測法による場合は，第119条第4項の規定を準用する。
5 標高を求める場合は，ジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正して求めるものとする。

第5節 数値編集

（要旨）
第124条 本章において「数値編集」とは，細部測量の結果に基づき，図形編集装置を用いて地形，地物等の数値地形図データを編集し，編集済データを作成する作業をいう。

（数値編集の点検）

第125条 数値編集の点検は，編集済データ及び編集済データの出力図を用いて行うものとし，編集済データはスクリーンモニターを用い，編集済データの出力図は自動製図機等による出力図 を用いて行うものとする。
2 編集済データの論理的矛盾等の点検は，点検プログラム等により行らものとする。
3 数値編集の点検結果は，精度管理表によりとりまとめるものとする。

第6節 補備測量
（要旨）
第126条 「補備測量」とは，取得漏れや経年変化等をTS 等により，現地で直接測量する作業をい う。

2 現地において確認及び補備すべき事項は，次のとおりとする。
一 編集作業で生じた疑問事項及び重要な表現事項
二 編集困難な事項
三 現地調査以降に生じた変化に関する事項
四 境界及び注記
五 各種表現対象物の表現の誤り及び脱落
3 現地において実施する補備測量は，基準点，T S 点及び編集済データに表現されている確実かつ明確な点に基づいて行うものとする。

4 補備測量の結果は，図形編集装置等の図形編集機能を用いて編集及び修正するものとする。
5 補備測量の結果の点検結果は，精度管理表によりとりまとめるものとする。

第7節 数値地形図データファイルの作成
（要旨）
第127条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って編集済デー タから数値地形図データファイルを作成し，電磁的記録媒体に記録する作業をいう。

第 8 節 品質評価

（品質評価）
第128条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第9節 成果等の整理
（メタデータの作成）
第129条 数値地形図データファイルのメタデータ作成は，第44条の規定を準用する。
（成果等）
第130条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 精度管理表
三 品質評価表
四 メタデータ
五 その他の資料

第3章 地上レーザ測量
第1節 要旨
（要旨）
第131条 「地上レーザ測量」とは，地上レーザスキャナを用いて地形，地物等を観測し，数値地形図データを作成する作業をいう。
（数値地形図データの地図情報レベル）

第132条 地上レーザ測量により作成する数値地形図データの地図情報レベルは，250及び500を標準 とする。
（地図情報レベルと観測条件）
第133条 観測条件は，地図情報レベルに応じて次の各号により，設定するものとする。
一 地形の観測条件は，放射方向のレーザ光を照射した地点（以下この章において「観測点」 という。）の間隔によって決定するものとする。
二 地物の観測条件は，放射方向の観測点間隔及びスポット長径によって決定するものとす る。

三 地上レーザスキャナの観測条件は，次表を標準とし，地物は放射方向の観測点間隔又は放射方向のスポット長径のいずれかが満たされているものとする。

地図情報レベル	地形		地物	
	放射方向の観測点 間隔	放射方向の観測点 間隔	放射方向のスポット 長径（FWHM）	
	330 mm	25 mm	50 mm	
500	330 mm	50 mm	100 mm	

（工程別作業区分及び順序）
第134条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 標定点の設置
三 地上レーザ観測
四 現地調査
五 数値図化
六 数値編集
七 補測編集
八 数値地形図データファイルの作成
九 品質評価
十 成果等の整理

第2節 作業計画

（要旨）
第135条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。

第3節 標定点の設置

（要旨）
第136条 本章において「標定点の設置」とは，座標変換により地上レーザスキャナに水平位置，標高及び方向を与えるための基準となる点（以下この章において「標定点」という。）を設置

する作業をいう。

（標定点の配置）

第137条 標定点は，地上レーザスキャナの設置位置とともに次の各号を考慮し，適切に配置するも のとする。

一 作業地域の大きさ
二 地上レーザスキャナの性能
三 レーザ光の地形上でのスポット長径
四 レーザ光の地物からの反射強度
五 平面直角座標系への変換の方法
2 標定点は，地上レーザ観測の有効範囲の外に設置することを原則とする。
3 標定点の数は，地上レーザ観測ごとに次の各号のとおりとする。
一 相似変換による方法に用いる場合は 4 点以上
二 後方交会による方法に用いる場合は 3 点以上
4 異なる地点から複数回，地上レーザ観測する場合には，標定点の数は冗長性が保てる範囲 で減らすことができる。

5 基準点は，標定点を兼ねることができる。

（標定点の精度）

第138条 標定点の精度は，数値地形図データの地図情報レベルに応じて，次表を標準とする。

精 度	水平位置 （標準偏差）	標高 （標準偏差）
250	0.1 m 以内	0.1 m 以内
500	0.1 m 以内	0.1 m 以内

（方法）
第139条 標定点の設置は，第2章第4節第1款のTS点の設置に準じた観測で求めることができる。
（成果等）
第140条 成果等は，次の各号のとおりとする。
一 標定点成果表
二 地上レーザスキャナ・標定点配置図
三 標定点測量簿及び同明細簿
四 精度管理表
五 その他の資料

第4節 地上レーザ観測
（要旨）

第141条 本章において「地上レーザ観測」とは，地上レーザスキャナを用いて地形，地物等を観測 し，平面直角座標系に変換してオリジナルデータを作成する作業をいう。
（地上レーザスキャナ）
第142条 地上レーザスキャナは，次の性能を有するものとする。
一 地上レーザスキャナの距離観測方法は，TOF（タイム・オブ・フライト）方式又は位相差方式とすること。
二 スポット径が分かること。
三 観測点の水平及び垂直方向の角度の観測間隔が分かること。
四 地形，地物等とレーザ光がなす角を入射角とし，標準的な地形，地物等が入射角 1.5 度以上で観測できること。
五 反射強度が取得できること。
（方法）
第143条 地上レーザ観測は，地形，地物等に対する方向，距離及び反射強度を観測するものとする。
2 観測の方向は，地形の低い方から高い方への向きを原則とする。
3 観測は，方向，距離及び受光した反射強度を記録するものとする。
4 観測対象物は，標識，地形，地物等に分類し，これらの大きさ，形状及び地上レーザスキ ヤナからの距離に応じて観測を行うものとする。なお，標識とは，三次元観測データを取得 するため，標定点の上に設置する一時標識をいう。

5 観測方法は，次の各号を原則とする。
一 平面直角座標系で観測する場合は，器械点と後視点による方法を用いるものとする。
二 局地座標系で観測する場合は，相似変換による方法又は後方交会による方法を用いるも のとする。

6 器械点と後視点による方法及び後方交会による方法を用いる場合は，コンペンセータを備 えた地上レーザスキャナを用いなければならない。
7 反射強度が同等の地物が隣接する場合は，それらの境が濃淡として捉えられるような措置 をとることができるものとする。
8 一部の観測対象物のみを高密度で観測することができるものとする。
9 同一箇所から複数回観測する場合は，それぞれ地上レーザスキャナの器械高を変えること を原則とする。

（標識の設置）

第144条 標定点の上には，標識を設置することを原則とする。ただし，標識と同等の観測精度が得 られる地物を用いる場合は，この限りでない。

2 標識の形状及び大きさは，その中心が所定の精度で観測できるものでなければならない。
3 標識の形状及び反射特性は，地上レーザスキャナのメーカーが推奨するものを使用するこ とを原則とする。
4 標識の大きさは，地上レーザスキャナからの距離に応じて選択するものとする。

5 標識は，地上レーザスキャナに対して正対して設置しなければならない。
（標識の観測）
第145条 標識に照射された三次元観測データを用い，標識の中心を観測する。

（観測点の選定）

第146条 数値図化に必要となる観測点を選定できるものとする。
2 観測点は，間隔に応じて間引きできるものとする。
3 観測点は，スポット長径に応じて除去することを原則とする。
4 観測点の選定は，第133条に規定する放射方向の観測点間隔及び放射方向のスポット長径に準じて行うものとする。
5 内挿による観測点の微細化は，行ってはならない。

（平面直角座標系への変換）

第147条 局地座標系で観測した三次元観測データは，標定点等を使用して平面直角座標系へ変換し， オリジナルデータとするものとする。

2 平面直角座標系への変換における標定点の残差は， 50 ミリメートル以内とする。
3 平面直角座標系への変換の点検結果は，精度管理表にとりまとめるものとする。

第5節 現地調查

（要旨）
第148条 本章において「現地調査」とは，地上レーザ観測で観測が困難な各種表現事項，名称，観測不良箇所等を，現地において調査確認する作業をいう。
2 観測不良箇所は，主に次の各号に定める範囲を調査する。
一 他の地物による陰蔽範囲
二 レーザ光の無反射範囲
三 反射強度が同じ隣接地物

（現地調査の実施）

第149条 現地調査は，次の各号による方法により実施するものとする。
一 写真や写生による方法
二 地上レーザ観測の濃淡図に整理する方法
2 写真や写生による方法では，各種表現事項等を写真や写生で記載するものとする。
3 地上レーザ観測の濃淡図に整理する方法では，各種表現事項等を地上レーザ観測の濃淡図 に記載するものとする。

4 各種表現事項等は，必要に応じて明膫な地物からオフセット値を測定することを原則とす る。
（整 理）

第150条 現地調査の結果は，数値図化及び数値編集作業を考慮して，位置が確認できるように整理 するものとする。
（成果等）
第151条 成果等は，次の各号のとおりとする。
一 現地調査結果の整理資料
二 その他の資料

第6節 数値図化
（要旨）
第152条 本章において「数値図化」とは，現地調査の結果を基に地上レーザ観測で得られたオリジ ナルデータから，地形，地物等の座標値を取得し，数値図化データを記録する作業をいう。
（数値図化システム）
第153条 数値図化に使用するシステムの構成及びシステムの性能は，次の各号を有するものとする。
一 電子計算機，スクリーンモニター，マウス等を有すること。
二 スクリーンモニターが複数の画面に分割できること。
三 任意の視点からの三次元表示ができること。
四 X，Y，Zの座標値と所定のコードが入力及び記録できる機能を有すること。

（取得する座標値の位）

第154条 数値図化における地上座標値は，0．01メートル位とする。

（細部数値図化）

第155条 細部数値図化は，線状対象物，建物，植生の順序で行い，等高線は地形図化で行うものと する。
2 分類コードは，付録 7 の数値地形図データ取得分類基準を標準とする。
3 数値図化は，オリジナルデータの上方からの正射影を基図とし，断面図や陰影図を参考に行うものとする。
4 濃淡不足，陰蔽等の障害により判読困難な部分又は図化不能部分がある場合は，その部分 の範囲を明示し，必要に応じて補測編集を行う場合の注意事項を記載するものとする。
（地形図化）
第156条 地形図化は，オリジナルデータより行うものとする。
2 分類コードは，付録 7 の数値地形図データ取得分類基準を標準とする。
3 変形地は，可能な限り等高線で取得し，その状況によって変形地記号を取得するものとす る。
4 等高線は，主曲線だけでは地形を適切に表現できない部分については補助曲線等を取得す るものとする。

5 陰蔽等の観測不良により図化不能部分がある場合は，その部分の範囲を明示し，必要に応 じて補測編集を行う場合の注意事項を記載するものとする。

6 オリジナルデータは，等高線間隔で段彩表現することを原則とする。

（標高点の選定）

第157条 標高点は，地形判読の便を考慮して次のとおり選定するものとする。
—道路の主要な分岐点
二 河川の合流点及び広い河川敷
三 主な傾斜の変換点
四 その付近の一般面を代表する地点
五 凹地の読定可能な最深部
六 その他地形を明確にするために必要な地点
2 標高点は，等密度に分布するよう配置に努め，その密度は，地図情報レベルに 4 センチメ ートルを乗じた値を辺長とする格子に1点を標準とする。

（標高点の観測）

第158条 標高の観測は，オリジナルデータからの読み取りを原則とする。
2 オリジナルデータの間隔が広く，適切な位置に観測点がない場合には，周辺の観測点から内挿するものとする。

（数値図化データの点検）

第159条 数値図化データの点検は，第152条から前条までの工程で作成された数値図化データをス クリーンモニターに表示させて，オリジナルデータ等を用いて行うものとする。
2 数値図化データの点検は，必要に応じて地図情報レベルの相当縮尺の出力図を用い，次の項目について行うものとする。
一 取得の漏れ及び過剰並びに平面位置及び標高の誤りの有無
二 接合の良否
三 標高点の位置及び密度並びに観測値の良否
四 地形表現データの整合
3 数値図化データの点検結果は，精度管理表にとりまとめるものとする。

第7節 数値編集

（要旨）
第160条 本章において「数値編集」とは，現地調査等の結果に基づき，図形編集装置を用いて地形，地物等の数値地形図データを編集し，編集済データを作成する作業をいう。

（数値編集の点検）

第161条 数値編集の点検は，編集済データ及び編集済データの出力図を用いて行うものとし，数値編集済データは，スクリーンモニターを用い，編集済データの出力図は自動製図機等による

出力図を用いて行うものとする。
2 編集済データの論理的矛盾等の点検は，点検プログラム等により行うものとする。
3 数値編集の点検結果は，精度管理表にとりまとめるものとする。

第8節 補測編集

（要旨）
第162条 本章において「補測編集」とは，数値図化で生じた判読困難な部分又は図化不能な部分を現地測量にて補備し，数値編集済データを編集する作業をいう。
2 補測編集は，必要に応じて行うものとする。
（方法）
第163条 補測編集は，第203条第2項に準拠するものとする。
（整理）
第164条 補測編集の調査結果は，数値図化出力図に整理することを原則とする。

第9節 数値地形図データファイルの作成
（要旨）
第165条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って補測編集済 データから数値地形図データファイルを作成し，オリジナルデータ等とともに電磁的記録媒体に記録する作業をいう。

第1 0 節 品質評価
（品質評価）
第166条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第11節 成果等の整理
（メタデータの作成）
第167条 数値地形図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第168条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 三次元観測データ
三 オリジナルデータ
四 観測図
五 精度管理表
六 品質評価表
七メタデータ

> 八 その他の資料

第4章 車載写真レーザ測量
第 1 節 要旨
（要旨）
第169条 「車載写真レーザ測量」とは，車両に自車位置姿勢データ取得装置及び数値図化用データ取得装置を搭載した計測•解析システム（以下「車載写真レーザ測量システム」という。） を用いて道路及びその周辺の地形，地物等を測定し，取得したデータから数値図化機及び図形編集装置により数値地形図データを作成する作業をいう。
2 道路の周辺に適用する場合は，車載写真レーザ測量システムの性能を踏まえ，所定の精度 が得られる範囲とする。
（数値地形図データの地図情報レベル）
第 170 条 車載写真レーザ測量により作成する数値地形図データの地図情報レベルは， 500 及び 1000 を標準とする。
（工程別作業区分及び順序）
第171条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 調整点の設置
三 移動取得及びデータ处理
四 数値図化
五 現地補測
六 数値編集
七 数値地形図データファイルの作成
八品質評価
九 成果等の整理

第2節 作業計画

（要旨）
第172条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。

第3節 調整点の設置

（要旨）
第173条 本章において「調整点の設置」とは，既知点のほかに解析結果の点検や調整処理に必要な水平位置及び標高の基準となる点（以下「調整点」という。）を設置する作業をいう。
（調整点の設置）
第174条 調整点は，走行区間の路線長や景況に応じて 2 点以上を，次の各号の順で設置することを

原則とする。
一 GNSS衛星からの電波の受信が困難な箇所
二 カーブや右左折等の進路変動箇所
三 取得区間の始終点
2 調整点は，数値図化用データ上で明膫に碓認できる地物とする。ただし，それらが存在し ない場合には標識，反射テープ等を使用して設置するものとする。

（調整点の精度）

第175条 調整点の精度は，数値地形図データの地図情報レベルに応じて，次表を標準とする。

地図情報レベル	精度	水平位置 （標準偏差）
500	0.1 m 以内	標高 （標準偏差）
1000	$0.1 \mathrm{m以内}$	

2 各取得区間における解析結果の調整処理に用いる調整点間の距離の許容範囲は，次表を標準とする。

調整点間の距離	許容範囲
500 m 以上	点間距離の $1 / 10,000$
500 m 未満	50 mm

（方法）
第176条 調整点の設置は，第2編第2章の基準点測量に準じた観測，又は第2章第4節第1款のT S 点の設置に準じて行うものとする。ただし，前条に規定する精度を確保し得る範囲内にお
いて，既知点間の距離，調整点間の距離，路線長等は，この限りでない。

第4節 移動取得及びデータ処理

第 1 款 移動取得
（要旨）
第177条 「移動取得」とは，車載写真レーザ測量システムを用いて，自車位置姿勢データ及び数値図化用データを生成するためのデータを取得する作業をいう。
（車載写真レーザ測量システム）
第178条 車載写真レーザ測量システムは，自車位置姿勢データ取得装置，数値図化用データ取得装置及び解析ソフトウェアで構成するものとする。
一 自車位置姿勢データ取得装置は，GNSS測量機，IMU（慣性計測装置）及び走行距離計等で構成するもので，それらが適切に同期され，解析処理に必要な自車位置姿勢デー夕を取得できるものとする。
二 数値図化用データ取得装置は，レーザ測距装置又は，レーザ測距装置と計測用カメラを

併用し，数値図化用データを生成するためのデータを取得できるものとする。
三 レーザ測距装置のみによる数値図化用データ取得装置には，参照用写真を撮影するため の参照用カメラが備えられているものとする。
四 車載写真レーザ測量システムを構成する機器は，車両に堅固に固定できるものとする。
2 自車位置姿勢データ取得装置は，水平位置 0.15 メートル以内，標高 0.2 メートル以内の精度 を有するものとする。

3 G N S S 測量機は，別表1 「測量機器級別性能分類表」に規定する性能を有し，かつ 1 秒以下の間隔でデータが取得できるものとする。
4 I MUは，センサ部のローリング，ピッチング，ヘディングの 3 軸の傾き及び加速度が計測可能で，データ取得間隔を含む性能は，次表に掲げるもの又はこれらと同等以上の性能を有すること。

セン サ 部	性 能
ローリン グ	0.05 度
ピッチン グ	0.05 度
ヘディン グ	0.15 度
データ取得間隔	0.01 秒

5 数値図化用データ取得装置は，次の性能を有するものを標準とする。
一 計測用カメラの数値図化範囲内における正射影の地上画素寸法は，5センチメートル以内であること。
二 レーザ測距装置の数値図化範囲における正射影の最少点群密度は，次のとおりとする。 イレーザ点群のみによる数値図化に用いる場合は，400点／平方メートル以上であること。
ロ 複合表示による立体的構造を持つ地物の数値図化及び距離を得るために用いる場合は， 50点／平方メートル以上であること。
八 複合表示による平面的構造を持つ地物の数値図化に用いる場合は，25点／平方メートル以上であること。
三 レーザ測距装置は，スキャン機能を有すること。
6 参照用カメラは，次の性能を有するものとする。
一 レーザ測距装置の照射範囲が網羅できること。
二 数値図化対象の地物が十分に判読できる解像度を有すること。
7 解析ソフトウェアは，次の性能を有するものとする。
一 自車位置姿勢データに基づいて，数値図化用データが作成できること。
二 調整点から自車位置姿勢の軌跡座標を算出し，調整処理できること。
（キャリブレーション）
第179条 車載写真レーザ測量システムは，キャリブレーションを実施したものを使用するものとす る。
2 固定式システムとは，車載写真レーザ測量システムを構成する機器の空間的配置を，作業

者が変更できないものをいう。GNSS測量機，IMU，レーザ測距装置等の機器を一つの燛体に固定し，筐体ごと車両に着脱するシステムを含む。
3 キャリブレーションの有効期間は，次のとおりとする。
一 固定式システムについては，1年を標準とする。
二 着脱式システムについては，6ヶ月を標準とする。

（移動取得計画）

第 180 条 移動取得を行うに当たつては，走行区間及び取得区間を決定し，移動取得計画図を作成す るものとする。
2 走行区間は，自車位置姿勢データ取得装置の初期化から終了処理までの区間とし，取得区間への進入及び退出においては，G N S S 衛星からの電波の安定した受信と車両の安定した走行ができるものとする。
3 取得区間は，数値図化用データ取得装置によりデータを取得する区間とし，次の各号に留意して決定するものとする。
一 G N S S 衛星からの電波の安定した受信が可能な取得区間が連続する場合には，一つの取得区間とすることができる。
二 GNSS衛星からの電波の安定した受信が長時間にわたつて期待できない箇所では，自車位置姿勢データ取得装置のセルフキヤリブレーションが行える待避場所を碓保するもの とする。
三 車両の走行が可能で，かつ数値図化が適切に行える幅員でなければならない。
4 移動取得計画の策定に当たっては，次の各号に留意するものとする。
一 取得区間の道路幅員を調查するとともに，立体交差部，側道部，取り付け道路部，道路工事，積雪等，移動取得の障害となるものの有無について確認する。
二 GNSS衛星の配置を事前に碓認し，適切な移動取得ができるようにする。
三 車両の走行速度は，数値図化用データ取得装置が所定の地上画素寸法又はレーザ点群密度を得ることができ，かつ欠測の生じない速度とする。
四 同一区間での取得を複数回行う必要がある場合には，それらの数値図化用データの合成 が適切に行えるようにする。
5 固定局は，取得区間との基線距離を原則 10 キロメートル以内とし，やむを得ない場合でも 30 キロメートルを超えないものとする。なお，固定局には，電子基準点を用いることができ る。

（移動取得）

第181条 移動取得は，移動取得計画に基づき，次の各号のデータを適切に取得するものとする。
一 自車位置姿勢データ取得装置を用いて，次のとおりGNSS観測データ，IMUによる加速度及び角速度データ等を取得する。
イ 固定局のGNSS観測データ取得間隔は，1秒以下とする。
ロ GNSS測量機のGNSS観測データ取得間隔は，1秒以下とする。
二 数値図化用データ取得装置を用いて，計測用カメラによる写真，レーザ測距装置による

> 距離データ等を取得する。

2 移動取得を開始するに当たっては，次の各号により使用する機器の初期化を行うものとす る。

一 初期化は，車載写真レーザ測量システムの機器構成を考慮して行うものとする。
二 GNSS測量機の初期化は，GNSS衛星の最低高度角15度を標準とする。
三 使用するGNSS衛星の数は，第36条第2項第二号の規定を準用する。
3 移動取得時は車両の安定走行に努めるものとし，交通状態，気象状態，衛星状態，光量及 び太陽高度等を勘案し，随時，取得区間を見直すものとする。
4 移動取得を終了するに当たっては，第2項に準じて使用する機器の終了処理を行うものと する。

（既知点との整合）

第182条 固定局を現地の既知点に設置しない場合，移動取得前に作業地域の既知点とGNSS観測 で得られる座標値の整合を確認し，必要に応じて既知点との整合を行うものとする。
2 既知点との整合の確認及び方法は，第119条第4項に準じて行らものとする。
3 標高を求める場合は，ジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正して求めるものとする。
（取得結果の点検及び再移動取得）
第183条 移動取得の終了後は，速やかにデータの取得状況及び取得したデータの良否を点検するも のとする。
2 点検の結果，取得状況又は取得したデータが良好でなかった区間において速やかに再移動取得を行らものとする。ただし，取得状況の改善が見込めない場合や再移動取得を行らこと が非効率である場合は，調整点による調整処理を行らものとする。

第2款 データ処理

（要旨）
第184条 「データ処理」とは，車両に搭載された数値図化用データ取得装置の計測位置と姿勢を解析して，数値図化用データの作成及び調整点との調整処理等を行うことをいう。
（解析処理）
第185条 解析処理は，移動取得の終了後に行うものとする。
2 解析処理は，G N S S 測量機，I MU，走行距離計等から得られたデータを用い，キネマ ティック解析又は最適軌跡解析により自車位置姿勢データを求めることをいう。
3 解析処理の結果とキャリブレーションデータを用いて，数値図化用データ取得装置の位置 と姿勢を算出するものとする。
4 解析処理の結果の点検結果は，精度管理表にとりまとめるものとする。
（数値図化用データの作成）

第186条 解析処理の終了後は，次の各号のとおり数値図化用データを作成するものとする。
一 計測用カメラで撮影された写真には，外部標定要素を与えるものとする。
二 レーザ測距装置により取得された距離データには三次元座標を，反射強度データには位置座標を与えるものとする。
三 計測用カメラの写真による正射画像を生成する場合は，レーザ測距装置による標高デー夕で写真を正射変換するものとする。
四 色付き点群を生成する場合は，レーザ測距装置によるレーザ点群に，計測用カメラによ る写真の色情報を内挿して作成するものとする。
五 数値図化用データは，内插処理による地上画素寸法や点群密度の細密化を行ってはなら ない。

（数値図化用データの点検）

第187条 数値図化用データの作成後は，速やかに点検を行い，精度管理表を作成し，再移動取得又 は調整点による調整処理を行う必要があるか否かを判定するものとする。
2 点検は次の各号について行うことを標準とする。
一 データの収録状況の良否
二 GNSS衛星からの電波の受信状況
3 調整点との調整処理が必要な区間は，次の各号による。
一 GNSS衛星からの電波を長距離にわたり受信できなかった区間
二 渋滞等によりGNSS衛星からの電波を長時間不均等に受信した区間
三 位置が所定の精度を満たしていない区間
4 数値図化用データと調整点との較差を点検し，次表の精度が得られていない区間について は，再移動取得又は調整点による調整処理を行うものとする。

地図情報レベル	水平位置 （許容範囲）	標高 $($（許容範囲）
500	0.15 m 以内	0.2 m 以内
1000	0.30 m 以内	0.3 m 以内

（数値図化用データの調整処理）

第188条 数値図化用データの調整処理は，次の各号のいずれかによるものとする。
一 調整点からGNSSアンテナの軌跡座標を算出し，解析を再度行ら方法による処理
二 調整点から車載写真レーザ測量システムの軌跡を算出し，解析処理結果に補正値を加え，数値図化用データを再作成する方法による処理
三 調整点から数値図化用データの補正値を求めて，数値図化用データを補正する方法によ る処理
2 数値図化用データの調整処理は，速やかに行らものとする。

第189条 数値図化用データの調整処理後，速やかに調整処理結果の点検を行い，精度管理表を作成 し，調整点の補充の要否を判定するものとする。
2 調整点からGNS S アンテナの軌跡座標を算出して解析を再度行う方法による調整処理結果の点検項目は，次の各号のいずれかによるものとする。
一 最適軌跡解析の解の標準偏差，平均値，最大値
二 調整処理前後の最適軌跡解析の解の標準偏差の較差
三 調整処理後の数値図化用データと調整点との較差
3 調整点から車載写真レーザ測量システムの軌跡を算出して数値図化用データを再作成する方法及び数値図化用データの補正値を求めて数値図化用データを補正する方法による調整処理結果の点検項目は，調整処理に使用した調整点以外の調整点と数値図化用データの較差と する。

4 調整処理結果の点検の許容範囲は，第187条第4項に準ずるものとする。
5 調整処理結果の点検結果は，精度管理表にとりまとめるものとする。
（数値図化用データの再作成又は補正）
第190条 調整処理を行った場合には，調整処理結果に基づき，数値図化用データを再作成するか又 は補正するものとする。
（合成）
第191条 同一取得区間で複数の移動取得を実施した場合は，必要に応じて，作成された数値図化用 データを合成するものとする。

2 合成の方法は，次の各号のとおり行うものとする。
一 合成は，合成するそれぞれの数値図化用データから共通に認識できる特徴点又は特徴線 を 4 つ以上抽出し，三次元の座標変換により行うことを原則とする。

二 合成するそれぞれの数値図化用データを座標変換する場合には，特徴点の取得精度に応 じた重量を用いるものとする。
三 全体の数値図化用データに部分的な数値図化用データを合成する場合には，部分的な数値図化用データを全体の数値図化用データに座標変換するものとする。

四 第188条第1項第二号により調整点から車載写真レーザ測量システムの軌跡を算出し，そ れぞれの数値図化用データが再作成された場合には，座標変換を行わずに合成ができるも のとする。

3 合成のための座標変換に使用した特徴点の残差は，座標軸の各成分の最大値が最大地上画素寸法の範囲内とする。
（合成結果の点検）
第192条 合成結果の点検は，合成作業の終了後速やかに行い，精度管理表を作成するものとする。
（数値図化用データの整理）
第193条 数値図化用データの整理は，次の各号により行うものとする。

一 第186条各号により作成された数値図化用データは，水平位置並びに標高及び色又は反射強度を付加した三次元点群データとして整理するものとする。

二 写真は，写真ファイル名で連結された外部標定要素を付加して整理するものとする。

第5節 数値図化

（要旨）
第194条 本章において「数値図化」とは，車載写真レーザ測量用数値図化機を用いて，地図情報を数値形式で取得し，数値図化データを記録する作業をいう。
（車載写真レーザ測量用数値図化機）
第195条 車載写真レーザ測量用数値図化機は，次の各号のいずれかの方法により数値図化が行える機能を有するものとする。

一 コンピュータ内に三次元空間を設け，スクリーンモニター上の複数の画面に異なる投影 でレーザ点群と外部標定要素付き写真を重畳した色付き点群を使用し，地図情報を数値化 する複合表示による方法

二 正射変換した写真や正射表示したレーザ点群又はレーザ反射強度点群を用いて地図情報 を数値化する正射表示による方法

三 立体的構造物の形状が顕著になるようにレーザ点群を三次元表示し，地図情報を数値化 する方法

2 車載写真レーザ測量用数値図化機は，数値図化用データの使用可能範囲を表示する機能を有するものとする。
（取得する座標値の単位）
第196条 数値図化における地上座標値は，0．01メートル位とする。

（数値図化範囲）

第197条 数値図化範囲は道路縁内を原則とし，車載写真レーザ測量システムの性能が数値地形図デ ータの精度の許容範囲を超えない範囲で道路縁外も数値図化できるものとする。

2 道路縁外を数値図化する場合は，数値図化用データ取得装置から遮蔽される部分を適切な測量方法で補測するものとする。

（細部数値図化）

第198条 細部数値図化は，次の各号による。
一 線状対象物，記号の順序で行うものとし，描画漏れのないように留意しなければならな い。

二 描画は，次条に規定する範囲で行う。
三 データの位置，形状等は，スクリーンモニターに表示して確認する。
2 分類コードは，付録 7 の数値地形図データ取得分類基準を標準とする。
3 陰影やハレーション等の障害により，判読困難な部分又は数値図化不能な部分がある場合

は，その部分の範囲を表示し，第6節現地補測において必要な注意事項を記載するものとす る。

4 接合は，第326条に準拠して行うことを原則とする。
5 写真の正射表示による方法により細部数値図化を行う場合は，次の各号に留意するものと する。

一 段差のある箇所は，車両に近い箇所を数値図化の基準とする。
二 写真間の接合部で座標を取得する場合には，中間点とする。
三 ガードレールや電柱等の立体的構造を持つ地物は，道路との接点で数値図化を行う。
6 レーザ点群から得られる反射強度の正射表示による方法により細部数値図化を行う場合は，次の各号に留意するものとする。
一 数値図化にあたつては参照用写真を参照する。
二 周辺との反射強度に差がない地物は，参照用写真に加え，現地補測や設計図書等に基づ いて数値図化する。

三 電柱等の立体的構造を持つ地物は，レーザ点群による陰影を基に三次元計算によって形状から中心位置の数値図化を行う。
7 複合表示による方法により細部数値図化する場合は，次の各号に留意するものとする。
一 数値図化範囲全体を三次元空間として扱うことを原則とする。
二 直線状の地物の中間で座標を取得しないようにする。
三 段差のある箇所は，車両に近い箇所を数値図化の基準とする。
四ガードレール等，立体的構造を持つ線状対象物は，レーザ点群による陰影やレーザ点群 による断面を用いて数値図化を行う。
五 電柱等の立体的構造を持つ地物は，レーザ点群による陰影を基に三次元計算によって形状の数値図化を行う。

（数値図化用データの使用範囲）

第199条 数値図化用データの使用範囲は，次の各号によるものとする。
一 写真の地上画素寸法は，次表のとおりとする。

地図情報レベル	地上画素寸法
500	$5 \mathrm{~cm} 以 内$
1000	10 cm 以内

二 レーザ点群を数値図化の基準とする場合，レーザの点群密度は，次表のとおりとする。

地図情報レベル	点群密度
500	400 点 $/ \mathrm{m}^{2}$ 以上
1000	100 点 $/ \mathrm{m}^{2}$ 以上

三 複合表示による方法で立体的構造を持つ地物の数値図化及び距離を得るためのレーザの点群密度は，次表のとおりとする。

地図情報レベル	点群密度
500	50 点 $/ \mathrm{m}^{2}$ 以上
1000	13 点 $/ \mathrm{m}^{2}$ 以上

四 複合表示による方法で平面的構造を持つ地物の数値図化に用いるレーザ点群密度は，次表のとおりとする。

地図情報レベル	点群密度
500	25 点 $/ \mathrm{m}^{2}$ 以上
1000	13 点 $/ \mathrm{m}^{2}$ 以上

（標高点の選定）

第200条 標高点の選定は，レーザ測距装置により取得したデータより行うものとする。
2 標高点の計測位置は，地形判読の便を考慮し，交差点等の形状が明瞭な箇所を選定するも のとする。
3 標高点の計測間隔は，地図情報レベルに 4 センチメートルを乗じた距離を標準とする。
（数値図化データの点検）
第201条 数値図化データの点検は，前条までの工程で作成された数値図化データをスクリーンモニ ターに表示させて，参照用写真等を用いて行うものとする。
2 数値図化データの点検は，次の項目について行う。また，必要に応じて地図情報レベルの相当縮尺の出力図を用いるものとする。
一 取得の漏れ及び過剰並びに平面位置及び標高の誤りの有無
二接合の良否
三 標高点の位置，密度及び測定値の良否
四 地形表現データの整合
3 数値図化データの点検結果は，精度管理表にとりまとめるものとする。

第6節 現地補測

（要旨）
第202条 本章において「現地補測」とは，数値図化データの出力図を用いて数値地形図データを作成するために必要な各種表現事項及び名称等について，地図情報レベルを考慮して現地にお いて確認及び補測し，数値編集に必要な現地補測データを作成する作業をいう。
（方法）
第203条 現地補測において確認及び補備すべき事項は，次のとおりとする。
一 数値図化用データから数値図化できなかった箇所
二 数値図化作業において生じた疑問事項及び重要な表現事項
三 境界及び注記

四 各種表現対象物の表現の誤り及び脱落
2 現地補測は，判読又は数値図化が困難な地物等及び移動取得後に変化が生じた地域につい て，基準点等又は数値図化データ上で現地との対応が確実な点に基づき，第2章第4節の細部測量により行うものとする。

（出力図の作成）

第204条 現地補測に使用する出力図の縮尺は，原則として，地図情報レベルに相当する縮尺とする。

（現地補測結果の点検）

第205条 現地補測の結果の点検は，現地補測データ及び前条の規定により作成した出力図を用い，第203条第 1 項に規定する事項について行うものとする。
2 現地補測の点検は，第2章第4節の細部測量により行うものとする。
3 現地補測の点検結果は，精度管理表にとりまとめるものとする。

第7節 数値編集

（要旨）
第206条 本章において「数値編集」とは，現地補測等の結果に基づき，図形編集装置を用いて数値図化データを編集し，編集済データを作成する作業をいう。

（数値編集）

第207条 図形編集装置に入力したデータについて，追加，削除，修正等の処理を行い，編集済デー夕を作成するものとする。
2 等高線データは，スクリーンモニター又は地図情報レベルの相当縮尺の出力図を用いて点検を行い，矛盾箇所等の修正を行うものとする。
3 数値編集は数値図化に用いた数値図化手法を考慮して行うものとする。
4 各地物の形状の特徴を表現するように編集を行うものとする。

（数値編集結果の点検）

第208条 数値編集の結果の点検は，編集済データにより作成した出力図を用いて行うものとする。
2 編集済データの論理的矛盾等の点検は，点検プログラム等により行うものとする。
3 数値編集の結果の点検結果は，精度管理表にとりまとめるものとする。

第 8 節 数値地形図データファイルの作成
（要旨）
第209条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って編集済デー タから数値地形図データファイルを作成し，三次元点群データとともに電磁的記録媒体に記録する作業をいう。

第9節 品質評価
（品質評価）
第 210 条 数値地形図データファイルの品質評価は，第 43 条の規定を準用する。

第10節 成果等の整理
（メタデータの作成）
第211条 数値地形図データファイルのメタデータ作成は，第44条の規定を準用する。
（成果等）
第212条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 三次元点群データ
三 精度管理表
四 品質評価表
五 メタデータ
六 その他の資料
2 外部標定要素付き写真を測量成果とする場合には，個人情報の保護及びプライバシーに配慮する。

第5章 UAV写真測量

第1節 要旨
（要旨）
第213条「UAV写真測量」とは，無人航空機（以下「UAV」という。）により地形，地物等を撮影し，その数値写真を用いて数値地形図データを作成する作業をいう。
（数値地形図データの地図情報レベル）
第214条 UAV写真測量により作成する数値地形図データの地図情報レベルは，250及び500を標準 とする。
2 地図情報レベル 1000 よりも大きい数値地形図データを作成する場合は，次条第一号から第四号までの工程は地図情報レベル500の規定に基づいて行い，同条第五号から第十一号までの工程は作成する数値地形図データの地図情報レベルに応じた規定に基づいて行うものとする。
（工程別作業区分及び順序）
第215条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 標定点の設置
三 撮影
四 空中三角測量
五 現地調査

六 数値図化
七 数値編集
八 補測編集
九 数値地形図データファイルの作成
十品質評価
十一 成果等の整理

第2節 作業計画
（要旨）
第216条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。

第3節 標定点の設置
（要旨）
第217条 本章において「標定点の設置」とは，空中三角測量に必要となる水平位置及び標高の基準 となる点（以下この章において「標定点」という。）を設置する作業をいう。
2 標定点には対空標識を設置する。

（標定点の精度）

第218条 標定点の精度は，数値地形図データの地図情報レベルに応じて，次表を標準とする。

精度	水平位置 （標準偏差）	標高 （標報レベル偏差）
250	0.1 m 以内	0.1 m 以内
500	0.1 m 以内	0.1 m 以内

（対空標識の規格及び設置等）
第219条 対空標識は，数值写真上で確認できるように，地上画素寸法等を考慮し，形状，寸法，色等を選定するものとする。
一 対空標識の模様は，次を標準とする。

＊型

X型

＋型

円型

二 対空標識の辺長又は円形の直径は，撮影する数值写真に15画素以上で写る大きさを標準 とする。
三 対空標識の色は白黒を標準とし，状況により黄黒とする。
四円型の対空標識を設置した標定点は，自動測定することを原則とする。
2 対空標識の設置に当たっては，次の各号に定める事項に留意する。

一 対空標識は，あらかじめ土地の所有者又は管理者の許可を得て設置する。
二 UAVから明瞭に撮影できるよう上空視界を確保する。
三 設置する地点の状態が良好な地点を選ぶものとする。
四 数値写真上で周辺地物との色調差が明瞭な構造物が測定できる場合は，その構造物を標定点及び対空標識に代えることができる。

3 設置した対空標識は，撮影作業完了後，速やかに回収し現状を回復するものとする。

（標定点の配置）

第220条 標定点は，作業地域の形状，撮影コースの設定，作業地域及びその周辺の土地被覆を考慮 し，適切に配置するものとする。
2 撮影が単コースの場合には，標定点は次の各号の条件を満たすように配置することを標準 とする。

一 標定点の配置は，コースの両端のステレオモデルに上下各 1 点及び両端のステレオモデ ル以外では，コース内に均等に配置することを標準とする。
二 水平位置（NH）及び標高（NV）の標定点数は，次の式を標準とする。

$$
\mathrm{NH}=\mathrm{NV}=(\mathrm{n} / 2)+2
$$

なお，n はステレオモデル数とし，（ ）の中の計算終了時の小数部は切り上げるものと する。
3 撮影が複数コースの場合には，標定点は次の各号の条件を満たすように配置することを標準とする。なお，撮影区域の形状は矩形を標準とする。また，水平位置の標定点と標高の標定点は兼ねることができる。
一 水平位置の標定点の配置は，ブロックの四隅に必ず配置するとともに，両端のコースに ついては 6 ステレオモデルに 1 点，その他のコースについては 3 コースごとの両端のステ レオモデルに 1 点，ブロック内の位置精度を考慮して30ステレオモデルに 1 点を均等の割合で配置することを標準とする。
二 水平位置の標定点数（NH）は，次の式を標準とする。

$$
\mathrm{NH}=4+2\{(\mathrm{n}-6) / 6\}+2\{(\mathrm{c}-3) / 3\}+\{(\mathrm{n}-6) \quad(\mathrm{c}-3) / 30\}
$$ なお，nは1 コース当たりの平均ステレオモデル数，cはコース数，\｛ \} の中の計算終了時の小数部は切り上げ，負になる場合は 0 とする。

三 標高の標定点の配置は，2 コースごとの両端ステレオモデルに 1 点ずつ配置するほか， 12ステレオモデルに 1 点の割合で各コースに均一に配置することを標準とする。
四 標高の標定点数は，次の式を標準とする。
$\mathrm{NV}=(\mathrm{n} / 12) \mathrm{c}+2(\mathrm{c} / 2)$
なお，nは1コース当たりの平均ステレオモデル数，c はコース数，（ ）の中の計算終了時の小数部は切り上げ，計算されたNVが二号で計算されたNHより小さい場合は，N VはNHと同数とする。

4 標定点の配置計画は，撮影計画図の上に作成するものとする。
（方法）
第221条 標定点の設置は，次の各号のとおりとする。
一 水平位置は，第 2 編第 2 章の基準点測量に準じた観測，又は第 3 編第 2 章第 4 節第 1 款 のTS点の設置に準じた観測で求めることができる。
二 標高は，第2編第3章で規定する簡易水準測量に準じた観測，又は第3編第2章第4節第1款のTS点の設置に準じた観測で求めることができる。
（成果等）
第 222 条 成果等は，次の各号のとおりとする。
一 標定点成果表
二 標定点配置図
三 標定点測量簿及び同明細簿
四 精度管理表
五 その他の資料

第4節 撮影
（要旨）
第223条 本章において「撮影」とは，UAVを用いて測量用数値写真を撮影する作業をいう。
（使用するUAVの性能等）
第224条 撮影に使用するUAVは，次の各号の性能及び機能を有するものを標準とする。
一 自律飛行機能及び異常時の自動帰還機能を装備していること。
二 航行能力は，利用が想定される撮影区域の地表風に耐えることができること。
三 撮影時の機体の振動や摇れを補正し，デジタルカメラの向きを安定させることができる こと。
（使用するデジタルカメラの性能等）
第 225 条 撮影に使用するデジタルカメラの本体は，次の各号の性能及び機能を有することを標準と する。
一 焦点距離，露光時間，絞り，I S O 感度が手動で設定できること。
二 レンズの焦点の距離を調整したり，レンズのブレ等を補正したりする自動処理機能を解除できること。
三 焦点距離や露光時間等の情報が確認できること。
四 十分な記録容量を確保できること。
五 撮像素子サイズ及び記録画素数の情報が確認できること。
2 撮影に使用するデジタルカメラのレンズは，単焦点のものを標準とする。
3 撮影した画像は，非圧縮形式で記録することを標準とする。
（独立したカメラキャリブレーション）
第226条 撮影に使用するデジタルカメラは，独立したカメラキャリブレーションを行ったものでな ければならない。
2 独立したカメラキャリブレーションは，三次元のターゲットを用いて行うことを標準とす る。
3 独立したカメラキャリブレーションを行ったデジタルカメラで撮影した画像の画像座標の残差は，0．1画素以内とする。
4 独立したカメラキャリブレーションにより求める値は，焦点距離，画像中心からの主点位置のズレ，放射方向の柾み量及び接線方向の歪み量を標準とする。
5 撮影に使用するデジタルカメラは，独立したカメラキャリブレーションを行った状態を維持するものとする。
6 独立したカメラキャリブレーションで作成する誤差モデルは，これを使用するソフトに適合していなければならない。
7 作成する誤差モデルは，バンドル調整プログラムに適したものでなければならない。
8 独立したカメラキャリブレーションは，撮影前に実施することを標準とするが，撮影後に実施することもできるものとする。
9 二次元ターゲットを用いて独立したカメラキャリブレーションを行ら場合は，三次元ター ゲットと同様に異なる方向からターゲットを撮影し，焦点距離を正しく補正しなければなら ない。

（撮影計画）

第 227 条 撮影計画は，撮影区域ごとに，作成する数値地形図データの地図情報レベル，地上画素寸法，対地高度，使用機器，地形形状，土地被覆，気象条件等を考慮して立案し，撮影計画図
としてまとめるものとする。

2 撮影する数値写真の地上画素寸法は，作成する数値地形図データの地図情報レベルに応じ て，次表を標準とする。

地図情報レベル	地上画素寸法
250	0.02 m 以内
500	0.03 m 以内

3 対地高度は，\｛（地上画素寸法）\div（使用するデジタルカメラの 1 画素のサイズ）\times（焦点距離）\} 以下とし, 地形や土地被覆, 使用するデジタルカメラ等を考慮して決定するもの とする。
4 撮影基準面は，撮影区域に対して一つを定めるが，高低差の大きい地域にあっては，数コ ース単位に設定することができる。
5 デジタルカメラの焦点距離は，レンズの特性や地形等の状況によって決定するものとし，決定した焦点距離は，撮影終了まで固定するものとする。
6 U A V の飛行速度は，数値写真が記録できる時間以上に撮影間隔がとれる速度とする。

7 同一コースは，直線かつ等高度の撮影となるように計画する。
8 同一コース内の隣接数値写真との重複度は 60 パーセント，隣接コースの数値写真との重複度は30パーセントを標準とする。
9 コースの位置及び隣接数値写真との重複度は，次の各号に配慮するものとする。
一 実体空白部を生じないようにする。
二 隠蔽部ができる限り少なくなるようにする。
三 パスポイント及びタイポイントが選点しがたい土地被覆がない。
10 撮影区域を完全にカバーするため，撮影コースの始めと終わりの撮影区域外に1ステレ オモデル以上設定する。

11 撮影計画は，撮影時の明るさや風速，風向，地形，地物等の経年変化等により，現場で の見直しが生じることを考慮しておく。

（機器の点検と撮影計画の確認）

第228条 U A V を飛行させるに当たつては，撮影計画の実際への適合性を確認する飛行を行い，機器の点検と撮影計画の確認を行うものとする。
2 機器の点検は，次の各号について行うものとする。
一 UAVの外観
二 UAVのネジの締付状態
三 バッテリの状態
四 送信機の状態
五 デジタルカメラの装着状態
六 デジタルカメラの設定
3 撮影計画の確認は，次の各号について行うものとする。
一 露光時間，感度等の撮影条件
二 撮影区域の地形，地物等の状況等を踏まえた撮影コース，対地高度の見直し
（撮影飛行）
第229条 撮影飛行は，次の各号により行うものとする。
一 計画対地高度及び計画撮影コースを保持するものとする。計画対地高度に対する実際の飛行の対地高度のずれは，10パーセント以内とする。
二 離着陸以外は，自律飛行で行うことを標準とする。
三 機体に異常が見られた場合は，ただちに撮影飛行を中止する。
四 他のUAV等の接近が確認された場合には，ただちに撮影飛行を中止する。
（撮影結果の点検）
第230条 撮影結果の点検は，撮影の直後に現地において行うものとする。
2 撮影結果の点検は，次の各号について行い，精度管理表等を作成し，再撮影が必要か否か を判定するものとする。

一 撮影区域

二 数値写真の画質
三 隣接数値写真間の重複度
四 隣接数値写真間の地上画素寸法較差
五 隠蔽部の有無
六 全ての標定点が適切に撮影できているか
3 撮影結果の点検は，全ての数値写真を対象に行うものとする。
4 数値写真の画質は，ボケ，ブレ，ノイズ等について点検するものとする。
5 数値写真間の重複度は，数値写真を撮影された関係で並べて点検するものとする。
6 隠蔽部の有無は，立体図化に障害がないかを点検するものとする。
（再撮影）
第231条 撮影結果の点検により，再撮影の必要がある場合は，それらの箇所について速やかに行う ものとする。
（成果等）
第232条 成果等は，次の各号のとおりとする。
一 撮影計画図
二 独立したカメラキャリブレーションで得られる成果一式
三 数値写真
四 撮影記録
五 撮影標定図
六 精度管理表
七 その他の資料

第5節 空中三角測量

（要旨）
第233条「空中三角測量」とは，撮影した数値写真，標定点，パスポイント及びタイポイントの写真座標，カメラキャリブレーションデータ等を用いて，数值写真の外部標定要素及びパスポ イント，タイポイントの水平位置及び標高を決定する作業をいう。

（パスポイント及びタイポイントの選定）

第234条 パスポイントは，同一コースで連続する数値写真間を連結する点，タイポイントは隣接コ ースの数値写真間を連結する点に分けて選定するものとする。
2 パスポイント及びタイポイントの選定は，数値写真間の連結が理論的に最も堅ろうとなる配置で，数値写真上で明膫に認められる位置に配置することを標準とする。
3 パスポイントの配置は，次の各号によるものとする。
一 主点付近及び主点基線に直角な両方向の3箇所以上に配置することを標準とする。
二 主点基線に直角な方向は，上下端付近の等距離に配置することを標準とする。
4 タイポイントの配置は，次の各号によるものとする。

一 1 モデル毎に等間隔かつ直線状にならないようジグザグに配置することを標準とする。
二 パスポイントで兼ねて配置することができる。
（写真座標の測定）
第235条 写真座標の測定は，標定点，パスポイント及びタイポイントを立体視で測定することを標準とする。

2 パスポイント及びタイポイントは，その点が写っている全ての数値写真で測定することを標準とする。

（調整計算）

第236条 調整計算は，カメラキャリブレーションデータ，標定点，パスポイント及びタイポイント の写真座標を用い，バンドル法により，各数値写真の外部標定要素並びにパスポイント及び タイポイントの水平位置及び標高を求めるものとする。

2 調整計算は，作業地域全域を一つのブロックとして行うことを標準とする。
3 調整計算ソフトの異常値検索機能等により，標定点の異常，標定点並びにパスポイント及 びタイポイントの計測の誤り等に起因する全ての大誤差を点検するものとする。

4 調整計算では，セルフキャリブレーションは行わないことを標準とする。
5 標定点の水平位置及び標高の残差は，どちらも標準偏差及び最大値ともに次表を標準とす る。

地図情報レベル	標準偏差	最大値
250	0.06 m 以内	0.12 m 以内
500	0.12 m 以内	0.24 m 以内

6 パスポイント及びタイポイントの交会残差は，標準偏差が 1.5 画素以内，最大値が 3.0 画素以内とする。

7 大気屈折及び地球曲率の影響の補正は，行わないものとする。
8 セルフキャリブレーション付きの調整計算を行った場合には，セルフキャリブレーション データを更新し，数値図化時のステレオモデル構築に再現できるようにしなければならない。
9 調整計算の点検結果は，精度管理表にとりまとめるものとする。

（成果等）

第237条 成果等は，次の各号のとおりとする。
— 外部標定要素成果表
二 パスポイント，タイポイント成果表
三 空中三角測量作業計画，実施一覧図
四 写真座標測定簿
五 調整計算簿
六 精度管理表

> 七 その他の資料

第6節 現地調査

（要旨）
第238条 本章において「現地調査」とは，数値写真で判読が困難な各種表現事項，名称，他の地物 に隠蔽された箇所等を，現地において調査確認する作業をいう。
2 現地調查を行らに当たっては，現地調査の着手前に数值写真や各種既存資料を元に，予察 を行らものとする。

（現地調査の実施）

第239条 現地調査は，予察の結果に基づいて数値写真及び各種資料を活用し，次の各号について実施するものとする。

一 予察結果の確認
二 数値写真上で判読困難又は判読不能な事項
三 注記に必要な事項
四その他特に必要とする事項
五 標定点
2 前項の内容を調查する場合，次の事項について留意するものとする。
一 コントラストが低い地物間の界
二 接触する建物の区画
三 数値写真上で不明膫な植生及び植生界
四 判読困難な凹地，がけ，岩等の表現上誤り易い地形
3 記号や注記は，ステレオモデルの向きに合わせて整理するものとする。
4 現地調査を分割して行う場合には，接合の受け渡し方法を予め決めておくものとする。
（整理）
第 240 条 調査結果は，数值図化及び数値編集作業を考慮して，数値写真等に記入し，整理するもの とする。
（成果等）
第241条 成果等は，次の各号のとおりとする。
一 現地調査結果を整理した数値写真等
二 その他の資料

第 7 節 数値図化
（数値図化）
第242条 数値図化は，第6章第8節の規定を準用する。

第 8 節 数値編集

（数値編集）

第243条 数値編集は，第6章第9節の規定を準用する。

第 9 節 補測編集

（補測編集）
第244条 補測編集は，第6章第10節の規定を準用する。

第10節 数値地形図データファイルの作成
（数値地形図データファイルの作成）
第245条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って補測編集済 データから数値地形図データファイルを作成し，電磁的記録媒体に記録する作業をいう。

第11節 品質評価
（品質評価）
第246条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第12節 成果等の整理
（メタデータの作成）
第247条 数値地形図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第248条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 精度管理表
三 品質評価表
四メタデータ
五 その他の資料

第6章 空中写真測量
第 1 節 要旨
（要旨）
第249条 「空中写真測量」とは，空中写真を用いて数値地形図データを作成する作業をいう。
（数値地形図データの地図情報レベル）
第250条 空中写真測量により作成する数値地形図データの地図情報レベルは，500，1000，2500， 5000及び10000を標準とする。
（工程別作業区分及び順序）
第251条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 標定点の設置
三 対空標識の設置
四 撮 影
五 同時調整
六 現地調査
七 数値図化
八 数値編集
九 補測編集
＋数値地形図データファイルの作成
十一 品質評価
十二 成果等の整理

第2節 作業計画

（要旨）
第 252 条 作業計画は，第 10 条の規定によるほか，工程別に作成するものとする。

第3節 標定点の設置

（要旨）
第 253 条 本章において「標定点の設置」とは，既設点のほかに同時調整に必要な水平位置及び標高 の基準となる点（以下この章において「標定点」という。）を設置する作業をいう。

（標定点の精度）

第254条 標定点の精度は，数値地形図データの地図情報レベルに応じて，次表を標準とする。

精 度	水 平 位 置 （標準偏差）	標 （標準偏差）
500	0.1 m 以内	0.1 m 以内
1000	0.1 m 以内	0.1 m 以内
2500	$0.2 \mathrm{mW内}$	$0.2 \mathrm{mW内}$
5000	$0.2 \mathrm{mW内}$	$0.2 \mathrm{m以内}$
10000	$0.5 \mathrm{mW内}$	$0.3 \mathrm{m以内}$

（方法）
第 255 条 標定点の設置は，次の各号のとおりとする。ただし，前条に規定する精度を確保し得る範囲内において，既知点間の距離，標定点間の距離，路線長等は，この限りでない。
一 水平位置は，第 2 編第 2 章の基準点測量に準じた観測，又は第 2 章第 4 節第 1 款のTS

点の設置に準じた観測で求めることができる。
二 標高は，第 2 編第 3 章で規定する簡易水準測量に準じた観測，又は第 2 章第 4 節第 1 款 のT S 点の設置に準じた観測で求めることができる。ただし，地図情報レベル2500以上の数値地形図データを作成する場合は，第2編第2章の基準点測量に準じた観測で標高を求 めることができる。

2 空中写真上で周辺地物との色調差が明瞭な構造物が測定できる場合は，その構造物上に標定点の設置を行い対空標識に代えることができる。
3 対空標識に代えることができる明瞭な構造物は，次の各号のうち，いずれかに該当するも のとする。

一 対空標識A型と同等又は3方向以上から同一点を特定できるもの
二 正方形で対空標識B型の寸法と同等なもの
三 円形で対空標識B型の寸法以上のもの

（成果等）

第256条 成果等は，次の各号のとおりとする。
一 標定点成果表
二 標定点配置図及び水準路線図
三 標定点測量簿及び同明細簿
四 精度管理表
五 その他の資料

第4節 対空標識の設置

（要旨）
第257条 「対空標識の設置」とは，同時調整及び数値図化において基準点，水準点，標定点等（以下この節において「基準点等」という。）の写真座標を測定するため，基準点等に一時標識 を設置する作業をいう。

（対空標識の規格及び設置等）

第258条 対空標識は，空中写真上で確認できるように，空中写真の縮尺又は地上画素寸法等を考慮 し，その形状，寸法，色等を選定するものとする。
一 対空標識の形状は，次のとおりとする。
A型
B型
C型
D型

二 対空標識の寸法は，次表を標準とする。

	A型•C型	B型•E型	D 型	厚さ
500	$20 \mathrm{~cm} \times 10 \mathrm{~cm}$	$20 \mathrm{~cm} \times 20 \mathrm{~cm}$	内側 $30 \mathrm{~cm} \cdot$ 外側 70 cm	$\begin{gathered} 4 \\ \mathrm{~mm}_{5}^{\mathrm{mm}} \\ 5 \\ \mathrm{~mm} \end{gathered}$
1000	$30 \mathrm{~cm} \times 10 \mathrm{~cm}$	$30 \mathrm{~cm} \times 30 \mathrm{~cm}$		
2500	$45 \mathrm{~cm} \times 15 \mathrm{~cm}$	$45 \mathrm{~cm} \times 45 \mathrm{~cm}$	内側 50 cm •外側 100 cm	
5000	$90 \mathrm{~cm} \times 30 \mathrm{~cm}$	$90 \mathrm{~cm} \times 90 \mathrm{~cm}$	内側 100 cm －外側 200 cm	
10000	$150 \mathrm{~cm} \times 50 \mathrm{~cm}$	$150 \mathrm{~cm} \times 150 \mathrm{~cm}$	内側 $100 \mathrm{~cm} \cdot$ 外側 200 cm	

三 対空標識の基本型は，A型及びB型とする。
四 対空標識板の色は白色を標準とし，状況により黄色又は黒色とする。
2 対空標識の設置に当たつては，次の各号に定める事項に留意する。
一 対空標識は，あらかじめ土地の所有者又は管理者の許可を得て，堅固に設置する。
二 対空標識の各端点において，天頂からおおむね 45 度以上の上空視界を確保する。
三 バックグラウンドの状態が良好な地点を選ぶものとする。
四 樹上に設置する場合は，付近の樹冠より50センチメートル程度高くする。
五 対空標識の保全等のために標識板上に次の事項を標示する。標示する大きさは，標識板 1 枚の 3 分の 1 以下とする。樹上等に設置する場合は，標示杭をもつて代えることができ る。

イ 公共測量
ロ 計画機関名
八 作業機関名
二 保存期限（ 年 月 日まで）
六 設置完了後，対空標識設置明細表に設置点付近の見取図を記載し，写真の撮影を行うも のとする。

3 設置した対空標識は，撮影作業完了後，速やかに現状を回復するものとする。

（対空標識の偏心）

第259条 対空標識を基準点等に直接設置できない場合は，基準点等から偏心して設置するものとす る。

2 対空標識を偏心して設置する場合は，偏心点に標杭を設置し，これを中心として対空標識板を取り付けるものとする。
（偏心要素の測定及び計算）
第260条 基準点等から偏心して対空標識を設置した場合は，偏心距離及び偏心角を測定し，偏心計算を行らものとする。
（対空標識の確認及び処置）
第261条 撮影作業終了後は，直ちに空中写真上に対空標識が写っているかどうかを確認しなければ ならない。

2 対空標識の設置の点検結果は，精度管理表にとりまとめるものとする。
（成果等）
第262条 成果等は，次の各号のとおりとする。
一 対空標識点明細表
二 偏心計算簿
三 対空標識点一覧図
四 精度管理表
五 その他の資料

第 5 節 撮影

第1款 要旨
（要旨）
第263条 本章において「撮影」とは，測量用空中写真を撮影する作業をいい，後続作業に必要な外部標定要素の同時取得及びデータ解析，写真処理及び数値写真の作成工程を含むものとする。

第2款 機材

（航空機及び撮影器材）

第264条 航空機は，次の性能を有するものとする。
一 撮影に必要な装備をし，所定の高度で安定飛行を行えること。
二 撮影時の飛行姿勢，航空カメラの水平規正及び偏流修正角度のいずれにも妨げられるこ となく常に写角が完全に確保されていること。

三 G N S S／I M U 装置（空中写真の露出位置を解析するため，航空機搭載のGNSS測量機及び空中写真の露出時の傾きを検出するための 3 軸のジャイロ及び加速度計で構成さ れる I MU，解析ソフトウェア，電子計算機及び周辺機器で構成されるシステムで，作業 に必要な精度を有するものをいう。）のG N S S アンテナが機体頂部に，I MUが航空カ メラ本体に取り付け可能であること。
2 フィルム航空カメラは，次の性能を有するものを標準とする。
一 フィルム航空カメラは，広角航空カメラであること。ただし，撮影区域の地形その他の

状況により，普通角又は長焦点航空カメラを用いることができる。
二 フィルム航空カメラは，撮影に使用するフィルターと組み合わせた画面距離及び歪曲収差の検定値が，0．01ミリメートル位まで明確なものであること。
三 カラー空中写真撮影に使用するフィルム航空カメラは，色収差が補正されたものである こと。

3 フィルムは，次の性能を有するものを標準とする。
一 写真処理による伸縮率の異方性が，0．01パーセント以下であること。
二 伸縮率の異方性及び不規則伸縮率は，相対湿度 1 パーセントについて 0.0025 パーセント以下であること。

三 フィルムの感色性は，特に指定された場合を除き，パン・クロマチックであること。
4 デジタル航空カメラは，次の性能を有するものを標準とする。
一 撮像素子を装備し取得したデジタル画像を数値写真として出力できること。
二 フレーム型とし所要の面積と所定の地上画素寸法を確保できること。
三 撮影に使用するフィルターと組み合わせた画面距離及び歪曲収差の検定値が，0．01ミリ メートル位まで明膫なものであること。
四 カラー数値写真に使用するデジタル航空カメラは，色収差が補正されたものであること。
五 ジャイロ架台を装備していること。
5 デジタル航空カメラの撮像素子は，次の性能を有するものを標準とする。
一 破損素子が少ないこと。
二 ラジオメトリック解像度は，赤，緑，青等の各色12ビット以上であること。
三 ノイズが少ない高画質の画像が出力できること。
6 デジタル航空カメラは，G N S S／I M U 装置のボアサイトキャリブレーションにあわせ て複眼の構成を点検するものとし，点検結果は同時調整精度管理表に整理するものとする。 また，システム系統や撮像素子等についても異常がないかを確認するものとする。
（GNSS／I MU装置）
第265条 G N S S／I M U 装置は，次表に掲げるもの又はこれらと同等以上の性能を有するものと する。

項		目
G N S S 測量機	性	能
	水平位置	0.3 m
	高さ	0.3 m
	データ取得間隔	1 秒
	ローリング角	0.015 度
	ピッチング角	0.015 度
	ヘディング角	0.035 度
	データ取得間隔	0.016 秒

一 G N S S アンテナは，航空機の頂部に確実に固定できること。

二 G N S S 測量機は，2周波で搬送波位相データを 1 秒以下の間隔で取得できること。
三 I MUは，センサ部の3軸の傾き及び加速度を計測できること。
四 I MUは，航空カメラ本体に取り付けできること。
五 キネマティック解析ソフトウェアは，次のものを有するものを標準とする。 イキネマティック解析にて基線ベクトルの解析ができること。

ロ 解析結果の評価項目を表示できること。
六 最適軌跡解析ソフトウェアは，次のものを有するものを標準とする。
イ 空中写真の露出された位置及び傾きが算出できること。
ロ 解析結果の評価項目を表示できること。
2 G N S S アンテナ及びIMUは，航空カメラとともにボアサイトキャリブレーションを行 らものとする。なお，ボアサイトキャリブレーションの有効期間は 6 ヶ月を標準とし，レン ズの取り外し等を行った場合は，その都度ボアサイトキャリブレーションを行うものとする。

（空中写真の数値化に使用する機器等）

第266条 フィルム空中写真の数値化に使用する主要な機器は，次の各項に掲げるもの又はこれらと同等以上の性能を有するものを標準とする。

2 空中写真用スキャナは，空中写真のロールフィルムをスキャンし，数値写真を画像形式で取得及び記録する機能を有するスキャナ，ソフトウェア，電子計算機及び周辺機器で構成さ れるシステムで，作業に必要な精度を保持できる次表の性能を有するものを標準とする。

項 目	性 能
光学分解能	0.01 mm 以内
スキャンサイズ	$240 \mathrm{~mm} \times 240 \mathrm{~mm}$ 以上
数値写真の色階調	各色 8 bit （フルカラー）以上
数値写真の幾何精度	0.002 mm （標準偏差）以内

3 空中写真用スキャナは，機器メーカーが推奨する定期点検を行うとともに，作業着手前に所要の精度を確認するため，各スキャナが保有する自己点検機能により点検するものとする。
4 空中写真用スキャナの点検に使用する格子板は， 5×5 点以上の格子密度を有し，230ミリ メートルメ230ミリメートル範囲の幾何精度を検証可能な各空中写真用スキャナに付属する精密格子板とし，第三者機関による検定を受けたものとする。
5 デジタルステレオ図化機は，ステレオ視可能な数値写真からステレオモデルを作成及び表示し，数値地形図データを数値形式で取得及び記録する機能等を有するソフトウェア，電子計算機及び周辺機器から構成されるシステムで，作業に必要な精度を保持できる性能を有す るものとする。
6 デジタルステレオ図化機の構成及び機能は，次のものを標準とする。
一 電子計算機，ステレオ視装置，スクリーンモニター及び三次元マウス又は X Y ハンドル， Z盤等で構成されるもの。
二 内部標定，相互標定，絶対標定及び外部標定要素によりステレオ表示できる機能を有す ること。

三 $\mathrm{X}, ~ \mathrm{Y}, ~ \mathrm{Z}$ の座標値及び所定のコードが入力及び記録できる機能を有すること。
四 0.1 画素以内まで画像計測ができる機能を有すること。

第3款 撮影

（空中写真の撮影縮尺及び地上画素寸法）

第267条 空中写真の撮影縮尺及び数値写真の地上画素寸法は，地図情報レベル等に応じて定めるも のとする。
2 フィルム航空カメラで撮影する空中写真の撮影縮尺及び地図情報レベルとの関連は，次表 を標準とする。

地図情報レベル	撮 影 縮 尺
500	$1 / 3,000 \sim 1 / 4,000$
1000	$1 / 6,000 \sim 1 / 8,000$
2500	$1 / 10,000 \sim 1 / 12,500$
5000	$1 / 20,000 \sim 1 / 25,000$
10000	$1 / 30,000$

3 計画機関が指示し，又は承認した場合は，撮影縮尺を標準の 80 パーセントを限度として小 さくすることができる。

4 デジタル航空カメラで撮影する数値写真の地上画素寸法と地図情報レベルとの関連は，次表を標準とする。

地図情報レベル	地上画素寸法（式中の $\mathrm{B}:$ 基線長， H ：対地高度）
500	$90 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}] \sim 120 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}]$
1000	$180 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}] \sim 240 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}]$
2500	$300 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}] \sim 375 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}]$
5000	$600 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}] \sim \sim 750 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}]$
10000	$900 \mathrm{~mm} \times 2 \times \mathrm{B}[\mathrm{m}] \div \mathrm{H}[\mathrm{m}]$

5 平坦地の撮影は，計画機関が指示し，又は承認した場合には，地上画素寸法を標準の160パ ーセントを限度として大きくすることができる。
（撮影計画）
第268条 撮影計画は，撮影区域ごとに次の各号の条件を考慮して作成するものとする。
一 地形等の状況により，実体空白部を生じないようにする。
二 G N S S 衛星の数及び配置は，作業に必要な精度が得られるよう計画するものとする。
三 同一コースは，直線かつ等高度の撮影となるように計画する。
四 同一コース内の隣接空中写真との重複度は60パーセント，隣接コースの空中写真との重複度は30パーセントを標準とする。ただし，地形等の状況及び用途によっては，同一コー ス内又は隣接コースのどちらについても，重複度を増加させることができる。

五 撮影区域を完全にカバーするため，撮影コースの始めと終わりの撮影区域外をそれぞれ最低1モデル以上設定する。

2 撮影基準面は，原則として，撮影区域に対して一つを定めるが，高低差の大きい区域にあ っては，航空機運航の安全を考慮し，数コース単位に設定することができる。
3 フィルム航空カメラを用いる場合の対地高度は，撮影縮尺及びフィルム航空カメラの画面距離から求める。撮影高度は，対地高度に撮影区域内の撮影基準面高を加えたものとする。
4 デジタル航空カメラを用いる場合の対地高度は，地上画素寸法，素子寸法及び画面距離か ら求めるものとする。撮影高度は，対地高度に撮影区域内の撮影基準面高を加えたものとす る。
5 キネマティック解析における整数値バイアスの決定方法は，固定局と撮影区域の基線距離 を考慮し，地上初期化方式と空中初期化方式から選択するものとする。
6 I MU初期化飛行は，撮影の開始コース，終了コース及び撮影基準面が異なるコースを考慮し行らものとする。
7 撮影コース長は，I MUの累積誤差を考慮しておおむね15分以内で撮影できる距離とする。
8 固定局は，撮影区域内との基線距離を原則 50 キロメートル以内とし，やむを得ない場合で も70キロメートルを超えないものとする。

9 固定局には，電子基準点を用いることを原則とする。
10 新たに固定局を設置する場合は， 1 級基準点測量及び 3 級水準測量に準ずる測量によっ て水平位置及び標高を求めるものとする。
11 固定局の設置位置は，次に留意して決定するものとする。
一 上空視界の確保及びデータ取得の有無
二 GNSSアンテナの固定の確保

（撮影時期）

第269条 撮影は，原則として，撮影に適した時期で，気象状態及びGNSS衛星の配置が良好な時 に行うものとする。
2 撮影時の G N S S 衛星の数は，第36条第2項第二号の規定を準用する。

（撮影飛行）

第270条 撮影飛行は，水平飛行とし，計画撮影高度及び計画撮影コースを保持するものとする。
2 撮影前後に整数値バイアス決定及び I MU ドリフト初期化のための飛行を行うものとする。
3 計画撮影高度に対するずれは，計画対地高度の 5 パーセント以内とする。ただし，フィル ム航空カメラによる撮影で撮影縮尺が 4000 分の 1 以上の場合，又はデジタル航空カメラによ る撮影で地図情報レベル500以下の場合は，計画対地高度の 10 パーセント以内とすることがで きる。

4 航空カメラの傾きは，鉛直方向とし，大幅な傾きが起きないように撮影するものとする。
5 等速直線飛行は，進入を含めて概ね15分以内とし，これを超える場合は適宜 I MU 初期化飛行を実施するものとする。
6 地上で初期化を行う場合は，航空機をマルチパスとなる反射源から離して駐機するものと

する。
（フィルムの使用）
第271条 フィルムの使用に際しては，きず又は静電気等による著しい汚損を生じないようにし，ロ ールフィルムの両端 1 メートル部分は，撮影に使用しないものとする。

2 ロールフィルムの途中におけるつなぎ合わせは，原則として行わないものとする。
（露出時間）
第272条 航空カメラの露出時間は，飛行速度，使用フィルム（撮像素子），フィルター，計画撮影高度等を考慮して，適切に定めなければならない。
（航空カメラの使用）
第273条 同一区域内の撮影は，原則として，同一航空カメラで行うものとする。
2 やむを得ず他の航空カメラを使用する場合は，同一コースは同一航空カメラを使用するも のとする。
3 空中写真に写し込む記録板には，撮影地区名，計画撮影高度及び撮影年月日を明膫に記載 しなければならない。
（空中写真の重複度）
第274条 空中写真の重複度は，撮影計画に基づいた適切な重複度となるように努めなければならな い。
2 隣接空中写真間の重複度は，最小で 53 パーセントとする。
3 コース間の空中写真の最小重複度は，10パーセントとする。
4 同一コースをやむを得ず 2 分割及び 3 分割する場合は，分割部分を 2 モデル以上重複させ なければならない。

第4款 GNSS／IMUデータの処理
（GNSS／IMUデータの取得）
第275条 GNSS／IMUデータの取得では，固定局のGNSS観測データ，航空機搭載のGNS S 観測データ及び I MU観測データを取得するものとする。
2 固定局のGNSS観測データ取得間隔は， 30 秒以下とする。
3 航空機搭載 G N S S 測量機のGNSS観測データ取得間隔は，1秒以下とする。
4 航空機搭載 G N S S／I M Uは，撮影の前後に連続して 5 分以上の観測を実施するものと する。

（GNSS／I MUの解析処理）

第276条 撮影が終了した時は，速やかにGNSS／I MUデータの解析処理を行うものとする。
2 解析処理は，固定局及び航空機搭載のGNSS測量機の観測データを用いて，キネマティ ック解析を行うものとする。

3 解析処理は，キネマティック解析及びI MU観測データによる最適軌跡解析を行うものと する。

4 最適軌跡解析結果より外部標定要素を算出するものとする。

（GNSS／I MU解析結果の点検）

第277条 GNS S／I MUの解析処理結果は，速やかに点検を行い，精度管理表等を作成し，再撮影が必要か否かを判定するものとする。
2 点検は，次の各号について行うものとする。
一 固定局及び航空機搭載のGNSS測量機の作動及びデータ収録状況の良否
二 サイクルスリップ状況の有無
三 G N S S／I MU撮影範囲の確保
四 計測高度及び計測コースの良否
3 キネマティック解析結果の点検は，撮影コース上において次の各号について行うものとす る。
一 最少衛星数
二 DOP（PDOP，HDOP，VDOP）値
三 位置の往復解の差
四 解の品質
五 位置の標準偏差の平均値と最大値
4 最適軌跡解析結果の点検は，撮影コース上において次の各号について行うものとする。
一 キネマティック解と I MU解との整合性
二 位置の標準偏差の平均値と最大値
三 姿勢の標準偏差の平均値と最大値
5 点検資料として，次の各号について作成するものとする。
一 撮影記録簿
二 撮影作業日誌
三 GNS S／I MU計算精度管理表
6 電子基準点以外の固定局を使用した場合には，点検資料として次の各号について作成する ものとする。

一 固定局観測記録簿
二 GNSS 観測データファイル説明書

第5款 フィルムの処理

（フィルムの写真処理）
第278条 フィルムは，撮影終了後，直ちに適切な方法により現像するものとする。
2 写真処理は，各種のむらを生じないように努め，折れ，きず，へこみ，膜面はがれ等で画像を損なわないように行うものとする。
3 密着印画に用いる印画紙は，半光沢及び中厚手のもので，画面周辺の枠線，指標，計器等 が印画される大きさのものとする。

4 密着印画の作成は，フィルムの写真処理に準じて行うものとする。
（フィルムの点検）
第279条 写真処理が終了したフィルムは，速やかに点検を行い，精度管理表等を作成し，再撮影が必要か否かを判定するものとする。

2 点検は，次の項目について行うものとする。
一 撮影高度の適否
二 撮影コースの適否
三 実体空白部の有無
四 指標及び計器の明膫度
五 写真の傾き及び回転量の適否
六 写真処理の良否
七 写真の画質
3 点検資料として次の各号について作成するものとする。
一 フィルム航空カメラ撮影コース別精度管理表
二 フィルム航空カメラ撮影ロール別精度管理表
三 点検用標定図
4 点検結果により，再撮影の必要がある場合は，原則として，当該コースの全部について速 やかに行うものとする。

（ネガフィルムの編集）

第280条 ネガフィルムの編集は，両端に1メートルの余白を残し，画像を汚損することのないよう適切に行うものとする。
2 ネガフィルムの編集は，次の各号により行らものとする。
一 編集は，区域外 1 モデル以上の写真を含めて行うものとする。ただし，海部等の場合は， この限りでない。
二 写真番号は，原則として，東西コースにあっては西から東へ，南北コースにあっては北 から南へ各コースとも 1 番から一連の番号を付すものとし，コースが分割された場合も同様とする。
三 コース番号は，原則として，東西コースにあっては北から南へ，南北コースにあっては東から西へ 1 番から一連の番号を付すものとし，コースが分割されている場合は，A，B， C等をコース番号の次に付し，接続部では 2 モデル以上を重複させるものとする。
四 道路，河川等の路線撮影の場合は，起点方向からコース番号を付すものとする。
五 各コースの両端の写真には，コース番号及び写真番号のほか必要事項を記入するものと する。
（ネガフィルムの収納）
第281条 編集を終了したネガフィルムは，空中写真フィルム記録をはり付けた缶にロールごと収納 するものとする。

（空中写真の数値化）

第282条 フィルム航空カメラにより撮影された空中写真の数値化は，適切な画像が得られるように努め，写真画像の損傷，汚れ，幾何学的歪み，輝度むら等を生じないように行うものとする。 2 数値化は，次の各号により行らものとする。
一 原則としてロールフィルムから直接行う。
二 数値化の前には，ロールフィルムに付着したゴミ，汚れ，ほこり等を除去するとともに きずやへこみ等の点検を行う。
三 ロールフィルムを装着する直前には，空中写真用スキヤナの写真架台のゴミ，汚れ，ほ こり等を除去する。

四 フィルム歪みが発生しないようにフィルム圧定装置を用いて確実に圧定を行う。
五 同一ロールフィルムは，原則として同一スキャナを使用して数値化を行う。
六 空中写真の中央並びに四隅において，明膫な画像が得られるようにピントを合わせる。
七 センサのずれ等が生じないように行う。
八 色調補正を行らためのプレスキャンは，原則として撮影コースごとに始点と終点で行う
ものとし，撮影コース内で顕著に色調が変わる地域がある場合は，これらを分けて行う。
九 数値化された空中写真は，土地被覆，撮影時期，天候，撮影コースと太陽位置との関係等を考慮して抜き取り，全体の色調が統一されているかを点検する。
＋数値化した空中写真の向きは，原則として，次のとおりとする。
ィ東西コースで撮影した場合は，北方向を上にして数值化する。
ロ 南北コースで撮影した場合は，東方向を上にして数値化する。
八 90 度以下の斜めコースで撮影した場合は，北西方向を上にして数值化する。
＝マイナス 90 度以上の斜めコースで撮影した場合は，北東方向を上にして数値化する。
十一 数値化の画素寸法及び画像データ形式は，次表を標準とする。

項 \quad 目	性 能
数値化の画素寸法	0.021 mm 以内
色階調	各色8bit以上
画像データ形式	非圧縮形式

（数値化の範囲）
第283条 数値化の範囲は，指標，カウンタ番号及びカメラ情報が入る範囲とする。
2 「カメラ情報」とは，レンズ番号及び焦点距離をいう。
（指標座標の測定）
第284条 数値写真の指標座標の測定は，デジタルステレオ図化機を使用し，各数値写真に含まれる指標を 1 回測定するものとする。
（内部標定）
第285条 内部標定は，4つ以上の指標を使用して決定するものとする。
2 指標座標の計算には，アフィン変換又はヘルマート変換を用いるものとし，誤差の許容範

囲は，0．03ミリメートルを標準とする。
3 指標の座標値及び歪曲収差は，使用した航空カメラの検定値を用いるものとする。
（空中写真の数値化の点検）
第286条 数値化が終了した空中写真は，速やかに点検を行い，精度管理表等を作成し，再数値化が必要か否かを判定するものとする。
2 点検は，次の項目について行うものとする。
一 数値化範囲の良否
二 指標の明否
三 カウンタ番号の明否
四 カメラ情報の明否
五 数値化による汚れ及び歪みの有無
六 色調の良否
七 内部標定による指標の誤差
3 点検資料として次の各号について作成するものとする。
一 撮影コース別精度管理表（空中写真の数値化）
二 撮影ロール別精度管理表（空中写真の数値化）
三 空中写真数値化 作業記録簿•点検記録簿
4 次の各号に該当する場合は，速やかに再数値化を行わなければならない。
一 指標，カメラ情報及びカウンタ番号が含まれて数値化されていない場合
二 指標の誤差の許容範囲を超えている場合
三 数値化に起因する汚れ及び歪みが含まれている場合
5 再数値化は，原則として当該空中写真についてのみ行うものとする。

第6款 数値写真の統合処理

（原数値写真の統合処理）
第287条 デジタル航空カメラによる撮影終了時には，次の各号に留意し，速やかに原数値写真の統合処理を行うものとする。
一 歪曲収差は取り除く。
二 原数値写真間の対応点は0．2画素以内で統合する。
三 再配列では画像を劣化させない。
2 数値写真の色階調は，各色 8 ビット以上とする。
3 画像ファイル形式は非圧縮形式とする。
4 統合処理した数値写真よりサムネイル写真を作成するものとする。

（統合処理した数値写真の点検）

第288条 統合処理が終了した数値写真は，速やかに点検を行い，精度管理表等を作成し，再撮影が必要か否かを判定するものとする。
2 点検は，次の項目について行うものとする。

一 撮影高度の良否
二 撮影コースの適否
三 実体空白部の有無
四 写真の傾き及び回転量の適否
五 統合処理の良否
六 数値写真の画質
3 点検資料としてデジタル航空カメラ撮影コース別精度管理表を作成するものとする。
4 点検結果により，再撮影の必要がある場合は，原則として，当該コースの全部について速 やかに行うものとする。

第7款 数値写真の整理

（数値写真の整理）
第289条 数値写真は，撮影された順番に従って整理し，サムネイル写真及び撮影諸元ファイルを作成するものとする。

2 整理は，区域外 1 モデル以上の数値写真を含めて行うものとする。ただし，海部等の場合 は，この限りでない。

（標定図の作成）

第290条 標定図は，原則として，数値地形図データファイル形式で作成するものとする。
2 標定図を作成する際は，原則として，地図情報レベル25000又は50000を背景として用いる ものとする。
（数値写真の収納）
第291条 数値写真の収納は，ファイルの欠損や重複等がないように留意するものとする。
2 フォルダとの関連やファイル名の付与等についての点検を行うものとする。

第 8 款 品質評価
（品質評価）
第292条 撮影の品質評価は，第43条の規定を準用する。

第 9 款 成果等の整理
（メタデータの作成）
第293条 撮影成果のメタデータの作成は，第44条の規定を準用する。
（成果等）
第294条 成果等は，作業方法に応じて，次の各号から得られたものとする。
－ネガフィルム
二 数値写真
三 サムネイル写真

四 撮影記録
五 標定図
六 精度管理表
七 品質評価表
八メタデータ
九 その他の資料

第6節 同時調整

（要旨）
第295条 「同時調整」とは，デジタルステレオ図化機を用いて，空中三角測量により，パスポイン ト，タイポイント，標定点の写真座標を測定し，標定点成果及び撮影時に得られた外部標定要素を統合して調整計算を行い，各写真の外部標定要素の成果値，パスポイント，タイポイ ント等の水平位置及び標高を決定する作業をいう。
（方法）
第296条 同時調整は，原則として作業地区全域を一つのブロックとしてバンドル法により行うもの とする。
2 同時調整の計画図は，数値図化区域，撮影コース及び標定点等の配置を考慮して作成する ものとする。
3 調整計算に使用するプログラムは，テストデータによる検証が行われたものを使用するも のとする。
4 調整計算には，撮影時に取得したGNSS／I MUの解析計算で得られた外部標定要素の観測データ，パスポイント，タイポイント，標定点等を使用する。
5 GNSS／I MU装置で得られた外部標定要素の観測データのらち，計算に利用できるも のは，第277条の規定による点検を完了したものとする。

（標定点の選定）

第297条 標定点は，撮影コースの配置を考慮し，空中写真上で明膫な地点を選定するものとする。
2 標定点の配置及び点数は，次の各号のとおりとする。
一 路線撮影においては，各コースの両端のモデルに上下各 1 点配置することを標準とする。 ただし，やむを得ない場合は，2点のらち 1 点は当該モデルの近接モデルに配置すること ができる。
二 区域撮影においては，ブロックの四隅付近と中央部付近に計 5 点配置することを標準と する。ただし，地形等により3モデル以上連続してタイポイントによる連結が行われない箇所（当該コース上に標定点がある場合を除く）については，精度を考慮して当該モデル又は近接モデルに標定点を1点配置するものとする。
三 区域撮影が複数日にまたがる場合は，各撮影日のコース内に前号の標定点数のうち少な くとも 1 点の標定点を配置し，不足する場合は標定点を追加するものとする。
四 対象地域の特性により撮影後の標定点設置が困難である場合には，事前に標定点配置計

画を検討し対空標識を設置するものとする。
（パスポイント及びタイポイントの選定）
第298条 パスポイント及びタイポイントは，連結する各写真上の座標が正確に測定できる地点に配置するものとし，その位置はデジタルステレオ図化機の機能を用いて記録するものとする。 2 パスポイント及びタイポイントは，次のように配置することを標準とする。 －パスポイントの配置
ィ 主点付近及び主点基線に直角な両方向の 3 箇所以上に配置することを標準とする。
口 主点基線に直角な方向は，上下端付近の等距離に配置することを標準とする。二 タイポイントの配置
ィ 隣接コースと重複している部分で，空中写真上で明膫に認められる位置に，直線状に ならないようジグザグに配置することを標準とする。
ロ 配置する点数は，1モデルに 1 点を標準とする。
ハ パスポイントで兼ねて配置することができる。
3 パスポイント及びタイポイントの計測の可否は，調整計算の結果により判定し，配置，点数及び交会残差が適切でない場合には，目視にて再測定を行うものとする。

（写真座標の測定）

第299条 写真座標の測定は，各写真に含まれる指標，標定点，パスポイント及びタイポイントにつ いてデジタルステレオ図化機を用いて行らものとする。
2 指標，パスポイント及びタイポイントは，画像相関による自動測定を用いることができる。 ただし，測定結果は必ず目視で確認し，修正の必要な点に対しては手動で再測定を行うもの とする。
3 デジタル航空カメラで撮影した数値写真の場合は，数値写真の四隅を指標に代えるものと する。
4 円形の対空標識の測定は，自動処理により行らものとする。

（内部標定）

第300条 内部標定は，フィルムから数値化された数値写真の 4 つ以上の指標を基に次の各号により行らものとする。
一 指標座標の計算には，アフィン変換又はヘルマート変換を用いる。
二 指標測定誤差の許容範囲は，フィルム上に換算して最大値が 0.03 ミリメートル以内とす る。
2 指標の座標値，歪曲収差等は，使用した航空カメラの検定値を用いるものとする。

（調整計算）

第301条 各写真の外部標定要素の成果値は，原則として作業地区全域を一つのブロックとした調整計算によって決定するものとする。
2 調整計算ソフトの異常値検索機能等により，標定点の異常，標定点及びパスポイント・タ

イポイントの計測の誤り等に起因する全ての大誤差を点検するものとする。
3 調整計算式は，原則として，写真の傾きと投影中心の位置，パスポイント・タイポイント の位置等を未知数とした共線条件式とし，これに種々の定誤差に対応したセルフキャリブレ ーション項を付加することができる。ただし，セルフキャリブレーション項は，数値図化時 のステレオモデルの構築時に再現できるものに限定するものとする。
4 大気屈折及び地球曲率の影響は，原則として補正するものとし，セルフキャリブレーショ ンで代えることができる。
5 パスポイント及びタイポイントが作業に必要な精度を満たすまで，不良点の再測定及び追加測定を手動で行い再度調整計算を行うものとする。
6 標定点のどれか 1 点を用いて調整計算を行った後，その他の点を検証点とし，第 105 条の水平位置及び標高の精度を満たすかを点検する。
7 前項の検証点と計測値との較差が第105条の水平位置及び標高点の標準偏差の範囲内であっ た場合は，全ての標定点を用いて調整計算を行うものとする。
8 標定点の残差は，フィルム航空カメラ撮影の場合，水平位置及び標高とも標準偏差が対地高度の 0.02 パーセント以内，最大値が 0.04 パーセント以内とし，デジタル航空カメラ撮影の場合，水平位置及び標高の最大値が標準の地上画素寸法を基線高度比で割った値を超えない ものとする。
9 各空中写真上でのパスポイント及びタイポイントの交会残差は，フィルム航空カメラ撮影 の場合，標準偏差が 0.015 ミリメートル以内及び最大値が 0.030 ミリメートル以内とし，デジ タル航空カメラ撮影の場合，標準偏差が 0.75 画素以内及び最大値が 1.5 画素以内とする。
10 隣接するブロック間のタイポイント較差は，フィルム航空カメラ撮影の場合，水平位置及び標高とも対地高度の 0.06 パーセント以内とし，デジタル航空カメラ撮影の場合，標準の地上画素寸法を基線高度比で割った値に1．5倍した値以内とする。
11 調整計算の点検結果は，精度管理表にとりまとめるものとする。
（整理）
第302条 調整計算の終了後，外部標定要素，パスポイント及びタイポイントの成果表を作成し，次 のとおり整理するものとする。
一 調整計算の成果表の平面位置及び高さの座標は，0．01メートル位までとし，回転要素の角度単位は，0．0001度位までとする。
二 調整計算実施一覧図は，計画図に準じて写真主点の位置，標定点及びタイポイントを表示し作成するものとする。
（成果等）
第303条 成果等は，次の各号のとおりとする。
一 外部標定要素成果表
二 パスポイント，タイポイント成果表
三 同時調整作業計画，実施一覧図
四 写真座標測定簿

五 調整計算簿
六 精度管理表
七 品質評価表
八 カメラキャリブレーションファイル
九 その他の資料

第7節 現地調查

（要旨）
第304条 本章において「現地調査」とは，数値地形図データを作成するために必要な各種表現事項 ，名称等について地図情報レベルを考慮して現地において調査確認し，その結果を空中写真及び参考資料に記入して，数値図化及び数値編集に必要な資料を作成する作業をいう。
2 現地調査に使用する空中写真は，原則として，地図情報しベルに対応する数値地形図デー夕出力図の相当縮尺で作成する。なお，空中写真に代えて写真地図を使用することができる ものとする。
3 現地調査に使用する写真地図は，判読に支障のない解像度で，局所的な歪みを生じないよ うに作成するものとする。
（予察）
第305条 予察は，現地調査の着手前に，空中写真，参考資料等を用い，調查事項，調査範囲，作業量等を把握するために行らものとする。
2 予察は，次の事項について行い，その結果を空中写真，参考図，野帳等に記入し，現地調査における基礎資料とする。
一 収集した資料の良否
二 空中写真の判読困難な事項及びその範囲
三 判読不能な部分
四 撮影後の変化が予想される部分
五 各資料間で矛盾が生じている部分
3 予察の実施時期は，工程管理及び作業効率を勘案して数値図化工程と合わせて行うことが できる。
（現地調査の実施）
第306条 現地調査は，予察の結果に基づいて空中写真及び各種資料を活用し，次に掲げるものにつ いて実施するものとする。
一 予察結果の碓認
二 空中写真上で判読困難又は判読不能な事項
三 空中写真撮影後の変化状況
四 図式の適用上必要な事項
五 注記に必要な事項及び境界
六 その他特に必要とする事項

2 前項の内容を調査する場合，次の事項について留意するものとする。
一 基準点等の確認は，必要に応じて行うものとする。
二 外周の不明膫なもの及び建物記号描示のために区分する必要のある同一建物は，その区画を描示するものとする。

三 植生及び植生界は，空中写真で明瞭に判読できないものを調査するものとする。
四 判読困難な凹地，がけ，岩等表現上誤り易い地形については，数値図化の参考となるよ らに詳細に調査するものとする。
（整理）
第307条 調査結果は，数値図化及び数値編集作業を考慮して，空中写真等に記入し，整理するもの とする。
2 調査結果の整理は，次のとおりとする。
一 調査事項は，地図情報レベルに対応する相当縮尺の空中写真等に付録 7 に定める記号に より脱落及び誤記のないように整理するものとする。

二 地名及び境界を整理する空中写真等は，調査事項を整理した空中写真等とは異なるもの を使用することができる。

三 空中写真は，各コース 1 枚おきに整理するものとする。
（接合）
第308条 調査事項の接合は，現地調査期間中に行い，整理の際にそれぞれ点検を行うものとする。
（成果等）
第309条 成果等は，次の各号のとおりとする。
一 現地調査結果を整理した空中写真等
二 その他の資料

第8節 数値図化
（要旨）
第310条 本章において「数値図化」とは，空中写真及び同時調整等で得られた成果を使用し，デジ タルステレオ図化機によりステレオモデルを構築し，地形，地物等の座標値を取得し，数値図化データを記録する作業をいう。
（デジタルステレオ図化機）
第311条 数値図化に使用するデジタルステレオ図化機は，次の各号の構成及び性能を有するものと する。

一 電子計算機，ステレオ視装置，スクリーンモニター及び三次元マウス又は X Y ハンドル， Z盤等で構成されるもの。
二 内部標定及び外部標定要素によりステレオモデルの構築及び表示が行えるもの。
三 $\mathrm{X}, ~ \mathrm{Y}, ~ \mathrm{Z}$ の座標値と所定のコードが入力及び記録できる機能を有するもの。

四 画像計測の性能は，0．1画素以内まで読めるもの。
（取得する座標値の位）
第 312 条 数値図化における地上座標値は， 0.01 メートル位とする。

（ステレオモデルの構築）

第313条 「ステレオモデルの構築」とは，デジタルステレオ図化機において数値写真のステレオモデ ルを構築し，平面直角座標系と結合させる作業をいう。
2 ステレオモデルの構築は，同時調整を行った外部標定要素を用いることを標準とする。
3 セルフキャリブレーション付きバンドル法による同時調整成果を用いる場合は，その同時調整で決定されたカメラキャリブレーションデータを用いるものとする。
4 ステレオモデルの点検は，次の各号に留意して行い，必要に応じて再度同時調整を行うも のとする。
－ 6 点のパスポイントの付近での残存縦視差が 1 画素以内であること。
二 標定点の残差が第 105 条の規定以内であること。

（細部数値図化）

第314条 細部数値図化は，線状対象物，建物，植生，等高線の順序で行うものとし，必ずデータの位置，形状等をスクリーンモニターに表示し，データの取得漏れのないように留意しなけれ ばならない。
2 分類コードは，付録 7 の数値地形図データ取得分類基準を標準とする。
3 変形地は，可能な限り等高線で取得し，その状況によって変形地記号を取得するものとす る。
4 等高線は，主曲線を1本ずつ測定して取得し，主曲線だけでは地形を適切に表現できない部分について補助曲線等を取得するものとする。
5 陰影，ハレーション等の障害により判読困難な部分又は図化不能部分がある場合は，その部分の範囲を表示し，現地補測（第330条第2項に規定する現地補測をいう。）を行う場合の必要な注意事項を記載するものとする。
6 数値図化時においては，データの位置，形状等をスクリーンモニターに表示して確認する ことを標準とする。

（数値図化の範囲）

第315条 モデルの数値図化範囲は，原則として，パスポイントで囲まれた区域内とする。
（地形データの取得）
第316条 地形表現のためのデータ取得は，等高線法，数値地形モデル法又はこれらの併用法で行う ものとする。
2 等高線法によりデータを取得する場合は，平面直角座標系における距離間隔，曲率変化又 は時間間隔のいずれかを取得頻度の指標として選択し，地形の状況に応じて適切に取得頻度

を設定するものとする。
3 数値地形モデル法によりデータを取得する場合は，デジタルステレオ図化機を用いて次の各号により直接測定し記録するものとする。ただし，必要に応じて等高線から計算処理で発生させることができるものとし，自動標高抽出技術を用いた数値地形モデル法及びその標高値による等高線データの取得を行ってはならない。
一 所定の格子点間隔は，地形の状況に応じて適切な取得間隔を設定する。
二 任意の点は，必要に応じて次条の規定を準用して選択する。
4 数値地形モデルのデータをそのまま採用し，成果とする場合は，点検プログラム又は出力図等により，データの点検を行うものとする。

（標高点の選定）

第317条 標高点は，地形判読の便を考慮して次のとおり選定するものとする。
一 主要な山頂
二 道路の主要な分岐点及び道路が通ずるあん部又はその他主要なあん部
三 谷口，河川の合流点，広い谷底部又は河川敷
四 主な傾斜の変換点
五 その付近の一般面を代表する地点
六 凹地の読定可能な最深部
七 その他地形を明確にするために必要な地点
2 標高点は，等密度に分布するように配置に努め，その密度は，地図情報レベルに 4 センチ メートルを乗じた値を辺長とする格子に 1 点を標準とする。

（標高点の測定）

第318条 標高点の測定は，1回目の測定終了後，点検のための測定を行い，測定値の較差の許容範囲は，次表を標準とする。

地図情報レベル	較
500	0.1 m 以内
1000	0.2 m 以内
2500	0.4 m 以内
5000	0.6 m 以内
10000	0.8 m 以内

2 較差が許容範囲を超える場合は，更に 1 回の測定を行い， 3 回の測定値の平均値を採用す るものとする。
3 標高点は，デジタルステレオ図化機による自動標高抽出技術を用いて取得してはならない。
（他の測量方法によるデータの追加）
第319条 数値図化データに，他の測量方法によるデータを追加する場合は第 322 条の規定を準用す る。
（数値図化データの点検）
第 320 条 数値図化データの点検は，第 313 条から前条までの工程で作成された数値図化データをス クリーンモニターに表示させて，空中写真，現地調査資料等を用いて行らものとする。
2 数値図化データの点検は，必要に応じて地図情報レベルの相当縮尺の出力図を用い，次の項目について行らものとする。
一 取得の漏れ及び過剰並びに平面位置及び標高の誤りの有無
二 接合の良否
三 標高点の位置，密度及び測定値の良否
四 地形表現データの整合
3 数値図化データの点検結果は，精度管理表にとりまとめるものとする。

（地形補備測量）

第321条 「地形補備測量」とは，地図情報レベル1000以下の数値地形図データを作成する場合に，計画機関が特に指定する区域を対象として等高線及び標高点を現地で補備する作業をいう。
2 地形補備測量は，原則として，次のいずれかの場合に行らものとする。
一 標高点及び等高線の精度を，高木の密生地についても確実に維持する必要がある場合
二 主曲線の間隔を 0.5 メートルとする場合
イ 簡易水準測量に基づいた標高点（以下「単点」という。）を測定し，各単点及び観測成果は，単点の位置が特定できる空中写真上に表示するものとする。
ロ 単点の密度は，地図情報レベルの相当縮尺で出力図とした時，地図情報レベルに 4 セ ンチメートルを乗じた値を辺長とする格子に 1 点を標準とする。
八 単点は 2 回測定し，その較差は 10 センチメートル以内とする。
三 圃場ごと及び特異点の標高を表示する場合

（地形補備測量の方法）

第322条 地形補備測量の方法は，基準点等又は同時調整等により座標を求めた点に基づいて，第2章第 4 節の細部測量及び 4 級基準点測量の規定により行うものとする。
2 地形補備測量データは，地形補備測量により取得した地形データを編集処理し，測定位置確認資料に基づき分類コードを付して作成するものとする。

第 9 節 数値編集

（要旨）
第323条 本章において「数值編集」とは，現地調査等の結果に基づき，図形編集装置を用いて数値図化データを編集し，編集済データを作成する作業をいう。
2 図形編集装置の構成は，第112条の規定を準用する。
（数値図化データ及び現地調査データ等の入力）
第324条 数値図化データ及び地形補備測量データは，図形編集装置に入力するものとする。
2 現地調査等において収集した図面等の資料は，デジタイザ又はスキャナを用いて数値化し，

図形編集装置に入力するものとする。

（数値編集）

第325条 前条において入力されたデータは，図形編集装置を用いて，追加，削除，修正等の処理を行い，編集済データを作成するものとする。

2 等高線データは，スクリーンモニター又は地図情報レベルの相当縮尺の出力図を用いて点検を行い，矛盾箇所等の修正を行らものとする。
（接合）
第326条 接合は，作業単位ごとに行い，同一地物の座標を一致させるものとする。
2 地形，地物等のずれが，第104条に定める製品仕様書の規定値以内の場合は，関係図形デー夕を修正して接合するものとする。
3 地形，地物等のずれが，第104条に定める製品仕様書の規定値を満たさない場合は，数値図化作業を再度実施するものとする。
4 基盤地図情報に該当する地物を含む場合は，第12章第6節の規定を準用する。

（出力図の作成）

第327条 点検，現地補測等のための出力図は，自動製図機を用いて編集済データより作成するもの とする。
2 自動製図機の性能は，第112条の規定を準用する。
3 出力図の縮尺は，原則として，地図情報レベルの相当縮尺とする。
4 出力図は，第107条に定める図式に基づいて作成するものとする。
（点検）
第328条 出力図の点検は，編集済データ及び前条の規定により作成した出力図を用いて行うものと する。
2 編集済データの論理的矛盾等の点検は，点検プログラム等により行うものとする。
3 数値編集の点検結果は，精度管理表にとりまとめるものとする。

第10節 補測編集
（要旨）
第329条 本章において「補測編集」とは，前節で作成された編集済データ及び出力図に表現されて いる重要な事項の確認を行い，必要部分を現地において補測する測量（以下「現地補測」と いう。）を行い，これらの結果に基づき編集済データを編集することにより，補測編集済デ ータを作成する作業をいら。
（方法）
第330条 補測編集において確認及び補備すべき事項は，次のとおりとする。
一 編集作業において生じた疑問事項及び重要な表現事項

二編集困難な事項
三 現地調査以降に生じた変化に関する事項
四 境界及び注記
五 各種表現対象物の表現の誤り及び脱落
2 現地補測は，判読又は数値図化が困難な地物等及び写真撮影後に変化が生じた地域につい て，基準点等又は編集済データ上で現地との対応が確実な点に基づき，第2章第4節の細部測量により行うものとする。
3 現地補測の結果は，測定結果を電磁的記録媒体に記録するほか，注記，記号，属性等を編集済データ出力図に整理する。

（補測編集）

第331条 補測編集済データは，現地補測の結果に基づき，図形編集装置を用いて前節の規定により作成された編集済データに追加，修正等の編集処理を行い作成するものとする。

2 補測編集における編集処理は，第 9 節の数値編集の規定を準用する。

（出力図の作成）

第332条 出力図の作成は，第327条の規定を準用する。
（出力図の点検）
第333条 出力図の点検は，補測編集済データ及び前条の規定により作成した出力図を用い，第330条第1項に規定する事項について行うものとする。

第11節 数値地形図データファイルの作成
（要旨）
第334条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って補測編集済 データから数値地形図データファイルを作成し，電磁的記録媒体に記録する作業をいう。

第12節 品質評価
（品質評価）
第335条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第13節 成果等の整理
（メタデータの作成）
第336条 数値地形図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第337条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 精度管理表

三 品質評価表
四メタデータ
五 その他の資料

第7章 既成図数值化
第 1 節 要旨
（要旨）
第338条 「既成図数値化」とは，既に作成された地形図等（以下「既成図」という。）の数値化を行い，数値地形図データを作成する作業をいう。
2 「ベクタデータ」とは，座標値をもった点列によって表現される図形データをいう。
3 「ラスタデータ」とは，行と列に並べられた画素の配列によって構成される画像データを いう。
（成果の形式）
第339条 既成図数値化における成果の形式は，ベクタデータを標準とする。
（座標値の位）
第340条 ベクタデータにおける地上座標値は， 0.01 メートル位とする。
2 ラスタデータにおける 1 画素は，既成図上で最大 0.1 ミリメートルとする。
（工程別作業区分及び順序）
第341条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 計測用基図作成
三 計測
四 数値編集
五 数値地形図データファイルの作成
六 品質評価
七 成果等の整理

第2節 作業計画

（要旨）
第 342 条 作業計画は，第 10 条の規定によるほか，既成図の縮尺，原図の良否，精度，数値化する項目等を考慮の上，工程別に作成するものとする。

第3節 計測用基図作成

（要旨）
第343条 「計測用基図作成」とは，既成図の原図に基づき計測に使用する基図を作成する作業をい う。

2 既成図の原図が利用困難な場合は，複製用原図を利用することができる。なお，「複製用原図」とは，既成図の原図を複製したものをいう。

3 複製用原図は，図郭線及び対角線の点検を行うものとする。複製用原図の図郭線及び対角線に対する許容範囲は次のとおりとする。ただし，誤差が許容範囲を超える場合は，補正が可能か適切に対応するものとする。

一 図郭線 0.5 ミリメートル以内
二 対角線 0.7 ミリメートル以内
（計測用基図作成）
第344条 計測用基図は，既成図の原図又は複製用原図を写真処理等により複製し，作成するものと する。
2 計測用基図の材質は，伸縮の少ないポリエステルフィルム等を使用するものとする。
3 計測用基図の作成に当たつては，必要に応じて資料の収集，現地調査等を行い，内容を補完するものとする。
4 計測用基図は，既成図の原図又は複製用原図と比較等を行い，画線の良否，表示内容等を点検し，必要に応じて修正するものとする。

第4節 計測

（要旨）
第345条 「計測」とは，計測機器を用いて，計測用基図の数値化を行い，数値地形図データを取得 する作業をいう。
（計測機器）
第346条 計測機器は，第112条に掲げるデジタイザ及びスキャナ又はこれと同等以上のものを標準 とする。
（デジタイザ計測）
第347条 デジタイザによる計測は，計測用基図を用いて，図葉単位に取得するものとする。
2 各計測項目の計測開始時及び終了時には，図郭四隅をそれぞれ独立に 2 回ずつ計測し，較差が 0.3 ミリメートルを超えた場合は再計測するものとする。ただし，計測用基図の状況に応 じて，図郭四隅付近で座標が確認できる点を使用することができる。

3 計測機器の機械座標値から平面直角座標値への変換は，アフィン変換を標準とする。
4 変換係数は，計測した図郭四隅の機械座標値及び図郭四隅の座標値から最小二乗法により決定するものとする。
5 図郭四隅の誤差の許容範囲は，地図情報レベルに 0.3 ミリメートルを乗じた値とする。
6 地物等の計測の精度は， 0.3 ミリメートル以内とする。
7 計測に当たつては，分類コード等を付すものとする。
8 分類コードは，付録 7 の数値地形図データ取得分類基準を標準とする。
（スキャナ計測）
第348条 スキャナによる計測は，図郭を完全に含む長方形の領域について，適切な方法で，図葉単位ごとに計測データを作成するものとする。
2 図郭四隅又はその付近で座標が確認できる点の画素座標は，スクリーンモニターに表示し て計測するものとする。
3 計測データは，必要に応じて座標計測及びラスタ，ベクタ変換を行うことができる。
一 計測における読取精度は，読み取る図形の最小画線幅の 2 分の 1 を標準とする。
二 計測においては，図葉ごとに縦及び横方向とも規定の画素数になるように補正を行うも のとする。
三 再配列を行う場合の内挿方法としては，最近隣内挿法，共 1 次内挿法， 3 次たたみ込み内插法等を用いる。
四 計測データには，必要に応じて図葉名等を入力する。
五 既成図がラスタデータの場合は，前条第5項の規定に基づく精度を満たしているものに限り，計測データとして使用することができる。
4 計測機器の機械座標値から平面直角座標における座標への変換は，前条第3項の規定を準用する。
5 変換係数の決定は，前条第4項の規定を準用する。
6 図郭四隅の誤差の許容範囲は，2画素とする。

第5節 数値編集

（要旨）
第349条 本章において「数値編集」とは，図形編集装置を用いて計測データを編集し，編集済デー夕を作成する作業をいう。
2 図形編集装置の構成等は，第112条の規定を準用する。

（数値編集）

第 350 条 数値編集は，計測データを基に，図形編集装置のスクリーンモニター上で対話処理により データの訂正，属性等の付与及びその他必要な処理を行うものとする。
2 計測データに取得漏れ，誤り等がある場合は，訂正するものとする。
3 隣接する図郭間の計測データの不合は，接合処理により座標を一致させるものとする。
4 基盤地図情報に該当する地物を含む場合は，第12章第6節の規定を準用する。

（数値編集の点検）

第 351 条 数値編集の点検は，編集済データを使用し，点検用出力図又はスクリーンモニター上で行 うものとする。
2 編集済データの論理的矛盾の点検は，点検プログラム等により行らものとする。
3 点検用出力図の作成は，次のとおりとする。
一 自動製図機等により計測用基図画像と重ね合わせて作成するものとする。
二 表示内容は，図葉番号，図名，図郭線，図形，属性等とし，これらが明膫に識別できる

ものでなければならない。
三 点検に支障がない範囲で適宜合版して作成するものとする。ただし，必要に応じて数値化した項目ごとに作成することができる。
4 点検用出力図又はスクリーンモニターによる点検は，次のとおりとする。
一 点検用出力図による点検
イ 数値化項目の脱落等の有無及び位置の精度について，点検用出力図と計測用基図を対照して行うものとする。
ロ 接合については，隣接する図葉の接合部分を点検用出力図で目視により点検する。
二 スクリーンモニターによる点検
イ 数値化項目の脱落，位置の精度，画線のつながり等について，目視により行う。
ロ 数値化項目の脱落等については，ラスタデータを背景に点検することができる。
八 接合については，隣接図葉を表示し，良否を点検するものとする。
5 点検の結果，計測漏れ，誤り等がある場合は，編集済データの訂正を行うものとする。
6 数値編集の点検結果は，精度管理表にとりまとめるものとする。

第6節 数値地形図データファイルの作成

（要旨）
第352条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って編集済デー タから数値地形図データファイルを作成し，電磁的記録媒体に記録する作業をいう。

第7節 品質評価

（品質評価）
第 353 条 数値地形図データファイルの品質評価は，第 43 条の規定を準用する。

第8節 成果等の整理

（メタデータの作成）
第354条 数値地形図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第355条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 出力図
三 精度管理表
四 品質評価表
五 メタデータ
六 その他の資料

第8章 修正測量
第1節 要旨
（要旨）
第356条「修正測量」とは，既成の数値地形図データファイル（以下「旧数値地形図データ」とい ら。）を更新する作業をいう。

2 修正測量における数値地形図データ修正の精度は，次表を標準とする。

地図情報レベル	水平位置の 標 準 偏 差	標高点の標準偏差	等高線の標準偏差
500	0.35 m 以内	$0.33 \mathrm{m以内}$	0.5 m 以内
1000	1.00 m 以内	0.5 m 以内	0.5 m 以内
2500	$2.50 \mathrm{mW内}$	1．0m以内	1.0 m 以内
5000	5.00 m 以内	2.5 m 以内	2.5 m 以内
10000	10.00 m 以内	5.0 m 以内	5.0 m 以内

（方法）
第357条 修正測量は，次に掲げる方法により行うものとする。
一 T S 等を用いる修正
二 キネマティック法による修正
三 R T K 法による修正
四 ネットワーク型 R T K 法による修正
五 地上レーザ測量による修正
六 車載写真レーザ測量による修正
七 UAV写真測量による修正
八 空中写真測量による修正
九 既成図を用いる方法による修正
十 他の既成データを用いる方法による修正
2 前項の各方法は，それぞれを適切に組み合わせて修正を行うことができるものとする。
3 修正データの取得は，必要に応じて修正箇所の周辺部分についても行い，周辺地物等との整合性を確認するものとする。

4 接合は，第326条に準拠して行うものとする。

（工程別作業区分及び順序）

第358条 工程別作業区分及び順序は，次のとおりとする。

一 T S 等を用いる修正

イ 作業計画
口 予察
八 修正数値図化
（1）基準点の設置
（2）修正細部測量
二 修正数値編集

ホ 数値地形図データファイルの更新
～品質評価
ト 成果等の整理
二 キネマティック法による修正
イ 作業計画
口 予察
八 修正数値図化
（1）基準点の設置
（2）修正細部測量
二 修正数値編集
ホ 数値地形図データファイルの更新
～品質評価
ト 成果等の整理
三 R T K 法による修正
イ 作業計画
口 予察
八 修正数値図化
（1）基準点の設置
（2）修正細部測量
二 修正数値編集
ホ 数値地形図データファイルの更新
～品質評価
ト 成果等の整理
四 ネットワーク型 R T K 法による修正
イ 作業計画
口 予察
八 修正数値図化
（1）基準点の設置
（2）修正細部測量
二 修正数値編集
ホ 数値地形図データファイルの更新
へ 品質評価
ト 成果等の整理
五 地上レーザ測量による修正
イ 作業計画
口 予察
八 地上レーザ観測
二 現地調査
ホ 修正数値図化
～修正数値編集
ト 数値地形図データファイルの更新
于 品質評価
リ成果等の整理
六 車載写真レーザ測量による修正
イ 作業計画
口 予察
八 移動取得及びデータ処理
二 修正数値図化
ホ 現地補測
～修正数値編集
ト 数値地形図データファイルの更新
于 品質評価
リ 成果等の整理
七 UAV写真測量による修正
イ 作業計画
ロ 撮影
八 予察
二 修正数値図化
ホ 現地調査
～修正数値編集
ト 数値地形図データファイルの更新
于 品質評価
リ 成果等の整理
八 空中写真測量による修正
イ 作業計画
ロ 撮影
八予察
二 修正数値図化
小 現地調査
～修正数値編集
ト 数値地形図データファイルの更新
于 品質評価
リ 成果等の整理
九 既成図を用いる方法による修正
イ 作業計画
口 予察
（1）既成図の収集
（2）修正箇所の抽出

八 現地調査
二 修正数値図化
（1）現地調査結果の編集
（2）座標計測による修正データの取得
ホ 修正数値編集
～数値地形図データファイルの更新
卜 品質評価
チ 成果等の整理
＋他の既成データを用いる方法による修正
イ 作業計画
口 予察
八 修正数値図化
（1）他の既成データの収集
（2）他の既成データの出力図の作成
（3）修正箇所の抽出
二現地調査
ホ 修正数値編集
～数値地形図データファイルの更新
卜 品質評価
チ 成果等の整理
（関係規定の準用）
第 359 条 修正測量作業については，ここに定めるもののほか，第 2 章から第 7 章までの規定を準用 する。

第2節 作業計画
（要旨）
第360条 作業計画は，第10条の規定によるほか，修正範囲，修正量等を考慮の上，工程別に作成す るものとする。

第3節 予察
（要旨）
第361条「予察」とは，旧数値地形図データの点検，修正個所の抽出等を行い，作業方法を決定す ることをいう。
2 予察は，次の各号について行らものとする。
一 旧数値地形図データのファイル構造の良否及びデータの良否についての点検
二 新設又は移転改埋等を実施した基準点の調查
三 各種資料図等の利用可否の判定
四 修正素図と空中写真等の資料との照合

五 地名，境界等の変更の調査及び資料収集
六 実施順序及び作業方法
3 予察結果は，空中写真測量による場合は空中写真上に，既成図による場合は既成図及び旧数値地形図データを重ね合わせ出力した出力図上に整理するものとする。

第4節 修正数値図化
第 1 款 T S 等を用いる修正数値図化
（要旨）
第362条 本款において「修正数値図化」とは，予察結果等に基づき，T S 等を用いて修正データを取得する作業をいう。
（方法）
第363条 修正データの取得は，予察結果等に基づき，第2章の規定を準用する。

第2款 キネマティック法による修正数値図化

（要旨）
第364条 本款において「修正数値図化」とは，予察結果等に基づきキネマティック法により，修正 データを取得する作業をいう。
（方法）
第365条 修正データの取得は，予察結果等に基づき第2章の規定を準用する。

第3款 RTK法による修正数値図化

（要旨）
第366条 本款において「修正数値図化」とは，予察結果等に基づき，RTK法により，修正データ を取得する作業をいう。
（方法）
第367条 修正データの取得は，予察結果等に基づき第2章の規定を準用する。

第4款 ネットワーク型 R T K 法による修正数値図化
（要旨）
第368条 本款において「修正数値図化」とは，予察結果に基づき，ネットワーク型RTK法により ，修正データを取得する作業をいう。
（方法）
第369条 修正データの取得は，予察結果等に基づき第2章の規定を準用する。

第5款 地上レーザ測量による修正数値図化
（要旨）
第370条 本款において「修正数値図化」とは，予察結果に基づき，地上レーザ測量により，修正デ ータを取得する作業をいう。
（方法）
第371条 修正データの取得は，予察結果等に基づき第3章第6節の規定を準用する。

第6款 車載写真レーザ測量による修正数値図化
（要旨）
第372条 本款において「修正数値図化」とは，車載写真レーザ測量により経年変化等の修正箇所の修正データを取得する作業をいう。
（方法）
第373条 修正データの取得は，予察結果等に基づき，第3章第5節の規定を準用する。

第7款 UAV写真測量による修正数値図化
（要旨）
第374条 本款において「修正数値図化」とは，U A V 写真測量により経年変化等の修正箇所の修正 データを取得する作業をいう。
（方法）
第375条 修正データの取得は，予察結果等に基づき，第6章第8節の規定を準用する。

第 8 款 空中写真測量による修正数値図化

（要旨）
第376条 本款において「修正数値図化」とは，空中写真測量により経年変化等の修正箇所の修正デ ータを取得する作業をいう。
（方法）
第377条 修正データの取得は，予察結果等に基づき，第6章第8節の規定を準用する。
2 相互標定は，パスポイント付近で行い，対地標定は，旧数値地形図データの座標数値若し くはGNSS／I MU装置で得られた外部標定要素等を用いて行うものとする。
3 第277条の規定によるGNSS／I MUデータの点検を完了した外部標定要素を用いた標定 において，点検する地物等の数は 6 点以上とし，誤差の許容範囲は次表の値とし，誤差の許容範囲を超えた場合には，旧数値地形図データの座標値を使用して同時調整を行うものとす る。

地図情報レベル	水平位置の誤差の許容範囲	標高の誤差の許容範囲
500	0.25 m	0.2 m
1000	0.50 m	0.3 m
2500	1.25 m	0.5 m
5000	2.50 m	1.0 m
10000	5.00 m	1.5 m

第 9 款 既成図を用いる方法による修正数値図化
（要旨）
第378条 本款において「修正数値図化」とは，既成図を使用して，変化部分の座標測定を行い，修正データを取得する作業をいう。

（使用する既成図の要件）

第379条 使用する既成図の要件は，次のとおりとする。
一 縮尺は，旧数値地形図データの地図情報レベルに相当する縮尺以上の縮尺で作成された ものであること。
二 基本測量又は公共測量の測量成果，又はこれと同等以上の精度を有するものであること。
三 既成図の精度は，これにより取得された修正データが第356条第2項の規定に掲げる精度 を満たすものとする。
四 座標系は，原則として平面直角座標であること。
2 使用する既成図には，写真地図を含むものとする。
（方法）
第380条 修正データの取得は，予察結果等に基づき，前章の規定を準用する。

第 10 款 他の既成データを用いる方法による修正数値図化
（要旨）
第381条 本款において「修正数値図化」とは，他の測量作業により作成された数値地形図データ（以下，「他の既成データ」という。）を使用して，修正データを取得する作業をいう。
（使用する他の既成データの要件）
第382条 使用する他の既成データの要件は，第379条の規定を準用する。
（方法）
第383条 修正データは，予察結果等に基づき他の既成データから取得するとともに，修正データの分類コード等は，必要な変換を行うものとする。

第5節 現地調査
（要旨）

第384条 本章において「現地調査」とは，修正データを作成するために必要な各種表現事項，名称等を現地において調査確認し，必要に応じて補備測量を行う作業をいう。

2 現地調査は，旧数値地形図データの出力図，修正データの出力図等を用いて行うものとす る。

第6節 修正数値編集

（要旨）
第385条 「修正数値編集」とは，図形編集装置を用いて，新たに取得した修正データと旧数値地形図データとの整合性を図るための編集等を行い，編集済数値地形図データを作成する作業を いう。
2 図形編集装置の構成等は，第112条の規定を準用する。
（方法）
第386条 編集済数値地形図データは，取得された修正データを用いて，旧数値地形図データの加除訂正等を行い作成するものとする。

（編集済数値地形図データの点検）

第387条 編集済数値地形図データの点検は，スクリーンモニター又は自動製図機等による出力図を用いて行らものとする。
2 編集済数値地形図データの論理的矛盾の点検は，点検プログラム等により行うものとする。

第7節 数値地形図データファイルの更新

（要旨）
第388条 「数値地形図データファイルの更新」とは，製品仕様書に従って編集済数値地形図データ から数値地形図データファイルを作成し，電磁的記録媒体へ記録する作業をいう。

第 8 節 品質評価
（品質評価）
第389条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第9節 成果等の整理
（メタデータの作成）
第390条 数値地形図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第391条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 精度管理表
三 品質評価表

四 メタデータ
五 その他の資料

第9章 写真地図作成
第1節 要旨
（要旨）
第392条 「写真地図作成」とは，数値写真を正射変換した正射投影画像を作成した後，必要に応じ てモザイク画像を作成し，写真地図データファイルを作成する作業をいう。

（写真地図作成）

第393条 写真地図作成は，空中写真から空中写真用スキャナにより数値化した数値写真又はデジタ ル航空カメラで撮影した数値写真を，デジタルステレオ図化機等を用いて正射変換し，写真地図データファイルを作成する作業をいい，必要に応じて隣接する正射投影画像をデジタル処理により結合させたモザイク画像を作成する作業を含むものとする。
2 空中写真の撮影方法は，第 6 章第 5 節の規定を準用する。
（方法）
第394条 写真地図の作成は，正射投影法により行うものとする。
2 写真地図の精度は，次表を標準とする。

地図情報レベル	水平位置 （標準偏差）	地上画素寸 法	撮影縮 尺	数値地形モデル	
				グリッド 間隔	$\begin{gathered} \text { 標高点 } \\ \text { (標準偏差) } \end{gathered}$
500	0.5 m 以内	0.1 m 以内	$1 / 3,000 \sim 1 / 4,000$	5m以内	$0.5 \mathrm{m以内}$
1000	1.0 m 以内	$0.2 \mathrm{m以内}$	$1 / 6,000 \sim 1 / 8,000$	$10 \mathrm{m以内}$	$0.5 \mathrm{m以内}$
2500	2.5 m 以内	0.4 m 以内	$1 / 10,000 \sim 1 / 12,500$	$25 \mathrm{m以内}$	1．0m以内
5000	$5.0 \mathrm{m以内}$	$0.8 \mathrm{m以内}$	$1 / 20,000 \sim 1 / 25,000$	50m以内	$2.5 \mathrm{m以内}$
10000	$10.0 \mathrm{m以内}$	1．0m以内	1／30， 000	50m以内	$5.0 \mathrm{m以内}$

3 写真地図は，注記等のデータを重ね合わせることができる。

（工程別作業区分及び順序）

第395条 工程別作業区分及び順序は，次を標準とする。
一 作業計画
二 標定点の設置
三 対空標識の設置
四 撮影
五 同時調整
六 数値地形モデルの作成
七 正射変換
八モザイク

九 写真地図データファイルの作成
十品質評価
十一 成果等の整理

（空中写真測量に関する規定の準用）

第396条 前条第一号から第六号までの作業については，次に規定するところによるほか，第6章第 2 節から第 9 節までの規定を準用する。
一 撮影に当たっては，写真地図の作成に適した良質鮮明な画質を得るように努めるものと する。
二 同時調整の成果等は，次の各号のとおりとする。
ィ 同時調整成果表（外部標定要素）
口 同時調整実施一覧図
八 写真座標測定簿
二 調整計算簿
ホ 精度管理表
～その他の資料
三 数値地形モデルの作成におけるブレークライン，等高線，標高点等の計測は，第6章第 8 節の規定を準用する。
四 写真地図データに重ね合わせる注記等のデータを作成する場合には，第6章第6節から第9節までの規定を準用する。

第2節 作業計画

（要旨）
第397条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。
（使用する数値写真）
第 398 条 数値写真は，原則として，作業着手前 1 年以内に撮影されたものを用いることを原則とす る。
2 使用する数値写真は，撮影時期，天候，撮影コースと太陽位置との関係等によって現れる色調差や被写体の変化を考慮して用いるものとする。

第3節 数値地形モデルの作成

（要旨）
第399条 「数値地形モデルの作成」とは，ブレークライン法等により標高を取得し，数値地形モデ ルファイルを作成する作業をいう。
（標高の取得）
第 400 条 標高は，デジタルステレオ図化機等を用いて，第394条第2項の規定を満たした精度で取得するものとする。必要に応じて局所的な歪みを補正するための地性線等を取得するものと

する。
2 標高の取得には，ブレークライン法，等高線法，標高点計測法及び自動標高抽出技術又は これらの併用法を用いるものとする。
3 ブレークライン法によりブレークラインを選定する位置は，次のとおりとする。
一 段差の大きい人工斜面，被覆等の地性線
二 高架橋及び立体交差の両縁
三 尾根若しくは谷又は主な水涯線
四 地形傾斜の連続的な変化を表す地性線
五 その他地形を明確にするための地性線
4 等高線法による等高線の間隔は，付録 7 に規定する等高線の値に 2 を乗じたものを原則と する。ただし，等傾斜の地形では適切に間隔を広げることができる。
5 標高点計測法により標高点を選定する場合は，第317条の規定を準用する。
6 自動標高抽出技術におけるグリッド間隔は，画像相関間隔が第394条第2項の規定による精度を満たすものとする。
7 標高を取得する範囲は，写真地図データファイルを作成する区域を網羅しているものとす る。
8 森林地帯等の植生が密生している地域において，地表面の標高計測が困難な領域について は，植生の表層面で作成することもやむを得ないものとする。ただし，地表面での数値地形 モデル（DTM）とは区分し，表層面の数値表層モデル（D S M）として数値地形図データファ イルに格納するものとする。
9 河川及び小規模な湖沼等の陸水面は，地表面に分類し，その標高は，周辺陸域の最近傍値 からの内挿処理によって求めるものとする。
10 既成の数値地形モデルを使用する場合は，データの品質及び経年変化等についての点検 を行うものとする。
（数値地形モデル～の変換）
第401条 数値地形モデルへの変換は，前条で取得した標高により第394条第2項の規定を満たすグ リッド又は不整三角網を用いるものとする。
2 数値地形モデルの形状をグリッドで作成する場合は，グリッド間隔は第394条第2項の規定 を準用する。
3 不整三角網を使用する場合は，前項のグリッドと同等以上の地形表現が可能な点密度とす る。
4 数値地形モデルを作成する範囲は，写真地図データファイルを作成する区域を網羅してい るものとする。
5 大規模な湖沼水面及び海水面の数値地形モデルは，標高値にマイナス9999メートル等の現実に存在しない値を与えるものとする。
（数値地形モデルの編集）
第402条 「数値地形モデルの編集」とは，作成された標高データをステレオモデル上に表示し，著

しく地表面と異なる点を修正する作業をいう。
2 数値地形モデルの修正は，デジタルステレオ図化機等を用いて行うものとする。
（数値地形モデルファイルの作成）
第403条 数値地形モデルファイルの作成は，編集後の数値地形モデルを用いて後続の作業工程で使用する形式により作成するものとする。
2 数値地形モデルファイルの格納単位は，第411条に規定する写真地図データファイルの格納単位と同一とする。
3 不整三角網の数値地形モデルファイルを格納する場合は，図郭にまたがる三角形は図郭線 による分割処理を行うものとする。
（数値地形モデルファイルの点検）
第404条 数値地形モデルファイルの点検は，前条で作成した数値地形モデルファイルを用いて行う ものとする。
2 数値地形モデルファイルの標高点精度は，第394条第2項の規定を準用する。
3 点検位置は数値地形モデルファイルから無作為に抽出された標高点とする。
4 点検は，デジタルステレオ図化機等を用いて計測された標高点と抽出された数値地形モデ ルファイルの標高点を比較し，精度管理表にまとめるものとする。
5 数値地形モデルファイルの点検結果は，精度管理表にとりまとめるものとする。

第4節 正射変換

（要旨）
第405条 「正射変換」とは，数值写真を中心投影から正射投影に変換し，正射投影画像を作成する作業をいう。
（正射投影画像の作成）
第406条 正射投影画像は，数値写真を標定し，数値地形モデルを用いて作成するものとする。
2 正射投影画像の地上画素寸法は，第394条第2項の規定を準用する。
3 内部標定は，第300条の規定を準用する。
4 対地標定は，同時調整等で得られた成果を用いて行うものとする。

第5節 モザイク

（要旨）
第407条「モザイク」とは，隣接する正射投影画像をデジタル処理により結合させ，モザイク画像 を作成する作業をいう。
（方法）
第408条 モザイクは，隣接する正射投影画像の接合部で著しい地物の不整合及び色調差が生じない ように行うものとする。

2 モザイクは，線状対象物においては不整合のないように努め，その他の対象物においては第394条第2 項に規定する水平位置の精度を満たすものとする。
（モザイク画像の点検）
第409条 モザイク画像の点検は，主要地物，接合部のずれ，正射投影画像間の色調差及び使用画像 の適否について次の各号のとおり行うものとする。
一 接合部の位置ずれについては，著しい歪みや段差の有無を点検する。
二 接合部の色調の差については，著しい相違の有無を点検する。
三 使用画像の適否については，最適な画像が使用されているかを点検する。
2 モザイク画像の点検結果は，精度管理表にとりまとめるものとする。

第6節 写真地図データファイルの作成
（要旨）
第410条 「写真地図データファイルの作成」とは，製品仕様書に従ってモザイク画像から写真地図 データファイルを図葉単位に切り出し，写真地図データファイルの位置情報として位置情報 ファイルを作成し，電磁的記録媒体に記録する作業をいう。

2 隣接する図葉においては，原則として同一のモザイク画像から図葉単位へ切り出すものと する。
3 注記等のデータを取得した場合には，第 6 章第 8 節又は第 9 節の規定により格納するもの とする。
（写真地図データファイル等の格納）
第411条 写真地図データファイルの格納単位は，付録 7 第 84 条を基本とした図葉単位（以下「国土基本図の図郭」という。）とするものとする。

2 写真地図データファイルは，原則としてT I F F 形式で格納するものとする。
3 位置情報ファイルは，写真地図データファイルごとにワールドファイル形式で格納するも のとする。

第7節 品質評価
（品質評価）
第412条 写真地図データファイルの品質評価は，第43条の規定を準用する。

第8節 成果等の整理
（メタデータの作成）
第413条 写真地図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第414条 成果等は，次の各号のとおりとする。
一 写真地図データファイル

二 位置情報ファイル
三 数値地形モデルファイル
四 精度管理表
五 品質評価表
六 メタデータ
七 その他の資料

第10章 航空レーザ測量
第1節 要旨
（要旨）
第415条 「航空レーザ測量」とは，航空レーザ測量システムを用いて地形を計測し，格子状の標高 データである数値標高モデル（以下「グリッドデータ」という。）等の数値地形図データフ アイルを作成する作業をいう。
（地図情報レベルと格子間隔）
第416条 数値標高モデルの規格は，地上での格子間隔で表現するものとする。
2 地図情報レベルと格子間隔の関係は，次表を標準とする。

地図情報レベル	格子間隔
500	0.5 m 以内
1000	1 m 以内
2500	2 m 以内
5000	5 m 以内

（工程別作業区分及び順序）
第417条 工程別作業区分及び順序は，次を標準とする。
一 作業計画
二 固定局の設置
三 航空レーザ計測
四 調整用基準点の設置
五 三次元計測データ作成
六 オリジナルデータ作成
七 グラウンドデータ作成
八グリッドデータ作成
九 等高線データ作成
十 数値地形図データファイル作成
十一 品質評価
十二 成果等の整理

第2節 作業計画
（要旨）

第418条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。
2 航空レーザ計測は，G N S S 衛星配置等を考慮して，計測諸元，飛行コース，固定局の設置場所及びG N S S 観測について計画するものとする。
3 「計測諸元」とは，対地高度，対地速度，コース間重複度（\％），スキャン回数，スキャ ン角度，パルスレート及び飛行方向•飛行直交方向の標準的取得点間距離等をいい，三次元計測データとして必要となるデータ間隔を得るための計画に使用する。
4 三次元計測データのデータ間隔（ β ）は，グリッドデータの格子間隔（ α ）と定数（ θ ） を用いた次の式により求め，格子内に 1 点以上になるように計画するものとする。 （式）$\beta=\alpha / \theta \quad(\theta: 1.1 \sim 1.5)$
5 航空レーザ計測は，三次元計測データのデータ間隔を満たすように計画するものとする。 その際，地形条件によっては，飛行コース間の重複度の調整や往復飛行による計測の設定を行う。
6 飛行コース間重複度は，30パーセントを標準とする。
7 計測対象地域は，作業地域の外周を格子間隔の10倍以上の距離を延伸して計測するように設計する。
8 固定局の設置場所は，上空視界や基線距離等を考慮し計画するものとする。
9 GN S S 観測計画は，最新の軌道情報を用いて受信可能な衛星数等を考慮して行うものと する。

第3節 固定局の設置

（固定局の設置）
第419条 「固定局の設置」とは，航空レーザ測量において，レーザ測距装置の位置をキネマティッ ク法で求めるための地上固定局を設置することをいう。
2 固定局の設置は，計測対象地域内の基線距離が 50 キロメートルを超えないように選定する ものとする。
3 固定局には，電子基準点を用いることを原則とする。
4 新たに固定局を設置する場合は，第2偏基準点測量の 1 級基準点測量及び 3 級水準測量に より水平位置及び標高値を求めるものとする。
5 固定局を設置した場合は，固定局明細表を作成するものとする。

（固定局の点検）

第420条 固定局の点検は，固定局の設置時に状況調査を行い，次の各号について行うものとする。
一 上空視界の確保及びデータ取得の有無
二 計測対象地域における選定の良否
三 固定局の水平位置及び標高値精度の確保
四 G N S S アンテナの固定の確保

第4節 航空レーザ計測
（航空レーザ計測）

第421条 「航空レーザ計測」とは，航空レーザ測量システムを用いて，計測データを取得する作業 をいう。
（航空レーザ測量システム）
第422条 航空レーザ測量システムは，G N S S／I MU装置，レーザ測距装置及び解析ソフトウェ アから構成する。
2 構成する機器等の性能は，次のとおりとする。
一 航空機搭載のG N S S アンテナ及び受信機 イ G N S S アンテナは，航空機の頂部に確実に固定できること。 ロ GNSS観測データを1秒以下の間隔で取得できること。 ハ 2 周波で搬送波位相を観測できること。
二 キネマティック解析ソフトウェアは，次の機能を有するものを標準とする。 イキネマティック解析にて基線ベクトルの解析ができること。
ロ 解析結果の評価項目を表示できること。
三 G N S S 測量機は，次表に掲げるもの又はこれらと同等以上の性能を有することものと する。

項 目	性 能
水平成分	0.3 m
高さ成分	0.3 m

四 IMU
イ I MUは，センサ部のローリング，ピッチング，ヘディングの3軸の傾き及び加速度 が計測可能で，解析結果の標準偏差及びデータ取得間隔が次表に掲げるもの又はこれら と同等以上の性能を有すること。

センサ部	性 能
ローリング	0.015 度
ピッチング	0.015 度
ヘディング	0.035 度
データ取得間隔	0.005 秒

ロ I MUは，レーザ測距装置に直接装着できること。
五 レーザ測距装置 イファーストパルス及びラストパルスの 2 パルス以上計測できること。

ロ スキャン機能を有すること。
八 眼等の人体への悪影響を防止する機能を有していること。
二安全基準が明確に示されていること。
六 解析ソフトウェアは，計測点の三次元位置が算出できること。
七 航空レーザ測量システムは，ボアサイトキャリブレーションを実施したものを用い，キ ャリブレーションの有効期間は6ヶ月とする。
八 機器点検内容を記録した点検記録は，作業着手前に作成するものとする。
（計測データの取得）
第423条 計測データの取得は，固定局のGNSS観測データ，航空機上のGNSS観測データ，I MU観測データ及びレーザ測距データについて行うものとする。
2 同一コースの航空レーザ計測は，直線かつ等高度で行うことを原則とする。ただし，回転翼航空機を利用する場合はこの限りでない。
3 同一コースにおける対地速度は一定の速度を保つように努めるものとする。
4 計測対象地域は，作業地域の外周を格子間隔の10倍以上の距離を延伸した範囲について取得するものとする。
5 G N S S 観測については，次の方法により行うものとする。
一 固定局及び航空機上のGNSS観測のデータ取得間隔は1秒以下とする。
二 取得時のGNSS衛星の数は，第36条第2項第二号の規定を準用する。
三 GNS S 観測結果等は，GNS S 衛星の配置等を記載した手簿，記簿等の資料，基線解析結果等を記載した精度管理表に整理する。
（航空レーザ用数値写真）
第424条 航空レーザ用数値写真は，空中から地表を撮影した画像データで，フィルタリング及び点検のために撮影するものとする。
2 航空レーザ用数値写真は，次の各号に留意して撮影するものとする。
一 航空レーザ計測と同時期に撮影することを標準とする。
二 建物等の地表遮蔽物が確認できる解像度とし，地上画素寸法は1．0メートル以下を標準と する。
三 撮影は，計測対象地域を網羅する範囲とする。
（航空レーザ計測の点検）
第425条 航空レーザ計測の点検は，航空レーザ計測終了時に，速やかに行い，精度管理表等を作成 し，再計測が必要か否かの判定を行うものとする。
2 点検は，次の各号について行うものとする。
一 固定局，航空機搭載のG N S S 測量機の作動及びデータ収録状況の良否
二 サイクルスリップ状況の有無
三 航空レーザ計測範囲の良否
四 航空レーザ用数値写真の撮影範囲及び画質の良否
五 計測高度及び計測コースの良否
3 キネマティック解析結果の点検は，計測コース上において次の各号について行うものとす る。

一 最少衛星数
二 DOP（PDOP，HDOP，VDOP）値
三 解の品質
四 位置の往復解の差
五 位置の標準偏差の平均値と最大値

4 最適軌跡解析結果の点検は，計測コース上において次の各号について行うものとする。
一 G N S S 解と I MU解の整合性
二 位置の標準偏差の平均値と最大値
三 姿勢の標準偏差の平均値と最大値
5 計測データの点検は，次の各号について行うものとする。
一 コースごとの計測漏れ
二 飛行コース上の飛行軌跡
6 点検資料として，次の各号について作成するものとする。
一 キネマティック解析処理時に出力される計測時間帯の衛星数及びP D O P 図
二 コースごとの計測範囲を重ね書きした計測漏れの点検図
三 飛行コース上に飛行軌跡を展開した航跡図
四 航空レーザ計測記録
五 航空レーザ計測作業日誌
六 G N S S 衛星の配置等を記載した手簿，記簿
七 GNS S／I MU計算精度管理表
7 電子基準点以外の固定局を使用した場合には，点検資料として次の各号について作成する ものとする。

一 固定局観測記録簿
二 GNSS観測データファイル説明書
8 点検結果により，再計測の必要がある場合は，速やかに行うものとする。

第5節 調整用基準点の設置

（調整用基準点の設置）
第426条 「調整用基準点の設置」とは，三次元計測データの点検及び調整を行うための基準点（以下「調整用基準点」という。）を設置する作業をいう。

2 調整用基準点の設置は，次の各号により行うものとする。
一 設置場所は，平坦で所定の格子間隔の 2 倍から 3 倍までの辺長があるグラウンド，空き地，道路，公園及び屋上等で，樹木や歩道の段差等の障害物がなく，計測が可能な場所と する。

二 点数は，作業地域の面積（平方キロメートル）を 25 で割った値に 1 を足した値を標準と し，最低数は 4 点とする。

三 配点は，作業地域の四隅に設置することを原則とし，所定の平坦地や水準点の位置を考慮し，作業地域全体で均一になるようにするものとする。
（調整用基準点の測定）
第427条 調整用基準点の測定は，次の各号のとおりとする。
一 水平位置の測定は，第2編第2章で規定する4級基準点測量により行う。ただし，近傍 に必要な既知点がない場合には，第58条第6項第二号に規定する単点観測法に準じて行う ことができる。

二 標高の測定は，第2編第3章で規定する 4 級水準測量により行う。ただし，近傍に必要 な水準点がない場合には，4級水準測量に代えて，測定する調整用基準点に最も近い 2 点以上の水準点を既知点としたGNS S 観測のスタティック法により標高を求めることがで きる。

2 調整用基準点配点図及び調整用基準点明細表を作成するものとする。なお，調整用基準点明細表には現況等を撮影した写真を添付する。

第6節 三次元計測データの作成
（三次元計測データの作成）
第428条 「三次元計測データの作成」とは，航空レーザ計測データを統合解析し，計測位置の三次元座標データを作成する作業をいう。
2 三次元計測データを作成する際は，断面表示，鳥㒈表示等により，隣接する建物等に複数回反射して得られるノイズ等によるエラー計測部分を削除するものとする。

3 三次元計測における地上座標値は，センチメートル位とする。

（三次元計測データの点検）

第429条 三次元計測データの点検は，調整用基準点成果との比較により行うものとする。
2 調整用基準点と三次元計測データとの比較点検は，次のとおりとする。
一 調整用基準点と比較する三次元計測データは，所定の格子間隔と同一半径の円又は 2 倍辺長の正方形内の計測データを平均したものとする。

二 各調整用基準点において調整用基準点と三次元計測データとの較差を求め，その平均値 と RMS誤差等を求めるものとする。
三 全ての調整用基準点において三次元計測データの平均値との較差を求め，その平均値と の標準偏差等を求めるものとする。

四 点検結果は，三次元計測データ点検表及び調整用基準点調査表に整理するものとする。
3 前項の点検の結果に対する措置は，次のとおり行うものとする。
一 各調整用基準点における点検の結果，較差の平均値の絶対値が 25 センチメートル以上又
 の是正処置を講じる。
二 全ての調整用基準点での点検の結果，較差の平均値の絶対値が 25 センチメートル以上又
是正処置を講じる。ただし，較差の傾向が，作業地域全体で同じ場合は第436条の規定に基 づき補正を行う。
（コース間標高値の点検）
第430条 コース間標高値の点検は，コース間の重複部分に点検箇所を選定し，コースごとの標高値 の比較点検を行うものとする。
2 点検箇所の選定と点検は，次のとおりとする。
一 点検箇所の数は，（コース長キロメートル $/ 10+1$ ）の小数点以下切り上げとする。

二 点検箇所の配置は，重複部分のコースの端点に取り，重複部分の上下に均等に配置する。
三 山間部，線状地域等の地形条件の場合は配置及び点数を変更することができる。
四 点検箇所の標高値は，平坦で明瞭な地点を選定し，格子間隔と同一半径の円又はおおむ ね 2 倍に辺長の正方形内の計測データを平均したものとする。
五 重複コースごとの各コースの点検箇所の標高値の較差を求め，較差の平均値等を求める ものとする。

六 重複コースごとの標高値の較差の平均値の絶対値が 30 センチメートル以上の場合は，点検箇所の再選定又は点検結果からキャリブレーション値の再計測と計測データの再補正を行うものとする。

3 コース間標高値の点検の整理は，コース間点検箇所残差表で行うものとする。また，配点図は，コース間点検箇所配点図を作成するものとする。

（再点検）

第431条 作業終了後には，調整用基準点配点図，調整用基準点明細表，三次元計測データ点検表，調整用基準点調査表，コース間点検箇所配点図及びコース間点検箇所残差表を作成し，これ らに航空レーザ測量用数値写真を用いて，次の各号の点検を行うものとする。

一 調整用基準点の配点及び設置箇所の適否
二 調整用基準点と三次元計測データとの較差の平均値と標準偏差の適否
三 点検箇所の配点と選点箇所の適否
四 点検箇所の標高値の較差の平均値と標準偏差の適否
（航空レーザ用写真地図データの作成）
第432条 航空レーザ用写真地図データの作成は，航空レーザ用数値写真及び三次元計測データ等を用いて正射変換により行うものとする。

2 航空レーザ用写真地図データファイルの作成は，次の各号により作成するものとする。
一 ファイルの単位は，国土基本図の図郭の単位を原則とする。
二 データの形式は，T I F F とする。
三 位置情報ファイルは，ワールドファイル形式とする。
（水部ポリゴンデータの作成）
第433条 水部ポリゴンデータは，航空レーザ用写真地図データを用いて水部の範囲を対象に作成す るものとする。

2 「水部」とは，海部のほか，河川，池等地表が水で覆われている場所とする。
3 水部ポリゴンデータの作成は，所定の格子間隔により決定するものとする。ただし，水部 が存在しない場合は，作業を省略することができる。

（欠測率の計算）

第434条 欠測率の計算は，計画する格子間隔を単位とし，三次元計測データの欠測の割合を算出す るものとする。

2 「欠測」とは，三次元計測データを格子間隔で区切り，1つの格子内に三次元計測データ がない場合をいう。ただし，水部は含まないものとする。

3 欠測率は，対象面積に対する欠測の割合を示すものであり，次の計算式で求めるものとす る。

$$
\text { 欠測率 }=(\text { 欠測格子数 } / \text { 格子数 }) \times 100
$$

4 計算は，国土基本図の図郭ごとに行い，欠測率は，欠測率調査表に整理するものとする。
5 欠測率は，格子間隔が 1 メートルを超える場合は10パーセント以下，1メートル以下の場合は15パーセント以下を標準とする。
（データの点検）
第435条 データの点検は，図形編集装置等を用いて行うものとする。
2 点検は，次の各号について行うものとする。
一 主要地物（道路等）に着目し，航空レーザ用写真地図データの画像接合部の著しいずれ の有無
二 水部ポリゴンデータの取得漏れの有無
三 水部ポリゴンデータ接合の良否
四 欠測率の良否

第7節 オリジナルデータの作成
（オリジナルデータの作成）
第436条 「オリジナルデータの作成」とは，三次元計測データから調整用基準点成果を用いて点検 －調整した三次元座標データを作成する作業をいう。
2 調整用基準点と三次元計測データとの較差の平均値の絶対値が 25 センチメートル以上の場合は，地域全体について補正を行うものとする。
3 補正処理は，地域全体の三次元データの標高値を上下の一律シフトの平行移動による補正 とする。
（オリジナルデータの点検）
第437条 オリジナルデータの点検は，オリジナルデータ作成の補正前及び補正後において行い，作業の終了時において再点検を行うものとする。
2 補正を行いオリジナルデータを作成した場合は，補正後の較差の平均値と標準偏差が許容範囲内であるかを調整用基準点残差表により点検するものとする。

第8節 グラウンドデータの作成
（グラウンドデータの作成）
第438条 「グラウンドデータの作成」とは，オリジナルデータからフィルタリング処理により地表面の三次元座標データ作成をする作業をいう。
2 グラウンドデータは，作業地域の外周を格子間隔の10倍以上の距離を延伸した範囲につい て作成するものとする。

3 「フィルタリング」とは，地表面以外のデータを取り除く作業をいう。対象項目は，次表 を標準とする。

交通施設	道路施設等	道路橋（長さ 5 m 以上），高架橋，横断歩道橋照明灯，信号灯，道路情報板等
	鉄道施設	鉄道橋（長さ 5 m 以上），高架橋（モノレールの高架橋含む），跨線橋， プラットホーム，プラットホーム上屋，架線支柱，信号灯支柱
	移 動 体	駐車車両，鉄道車両，船舶
建物等	建物及び付属施設等	一般住宅，工場，倉庫，公共施設，駅舎，無壁舎，温室，ビニールハウ ス，競技場のスタンド，門，プール（土台部分含む），へい
小物体		記念碑，鳥居，貯水槽，肥料槽，給水塔，起重機，煙突，高塔，電波塔，灯台，灯標，輸送管（地上，空間），送電線
水部等	水部に関する 構 造 物	浮き㭺橋，水位観測施設，河川表示板
植 生		樹木 ${ }^{1}$ ，竹林 ${ }^{*}$ ，，生垣＊${ }^{\text {1 }}$
その他	その他	大規模な改変工事中の地域 ${ }^{*}$ 2，地下鉄工事等の開削部，資材置場等の材料，資材
備 考	※ 1 地表面と ※2 地表面と	て，判断できる部分は可能な限り採用するものとする。 て，ほぼ恒久的であると判断できるものは採用するものとする。

4 大規模な地表遮蔽部分のフィルタリングにおいて，地形表現に不具合が生じる場合は，周囲のフィルタリングしていないグラウンドデータ等を用いて内挿補間を行うものとする。
（低密度ポリゴンデータの作成）
第439条 低密度ポリゴンデータは，フィルタリング結果を用いてオリジナルデータが低密度になっ た範囲を対象に作成するものとする。

2 「低密度」とは，オリジナルデータがフィルタリングによりまとまって除去された範囲を いう。
3 低密度の範囲は，第105条の数値地形図データの精度を満たせない箇所とし，等高線等の表示によって決定するものとする。
（既存データとの整合）
第440条 既存データとの整合は，既存データとグラウンドデータとの重複区間を設定して比較及び点検を行うものとする。

2 点検箇所は，調整用基準点及び地表遮蔽物の影響が少ないグラウンド，空き地，道路，公園等で平坦な箇所を対象とし，国土基本図の図郭単位ごとに 1 箇所以上， 1 箇所当たりの計測数が 100 点以上存在することを原則とする。

3 点検は，次のとおり行らものとする。
一重複範囲内のグラウンドデータを平均化し比較する。
二 較差の平均値及び標準偏差を求める。
三 標準偏差が $30 セ$ セチメートル以上の場合は，オリジナルデータ等も考慮した原因を調査 した上，再計算処理又は再計測等の是正措置を講じる。

四 既存データとしてグラウンドデータがない場合は，既存データのグリッドデータとの較

差に代えることができる。
五 点検結果は，既存データ検証結果表に整理する。
（フィルタリング点検図の作成）
第441条 フィルタリング点検図は，フィルタリングが適切に行われたか否か，作成されたグラウン ドデータの異常の有無について点検するために作成するものとする。
2 フィルタリング点検図は，「航空レーザ用写真地図データ及び等高線データの重ね合せ図」及び「航空レーザ用写真地図データ，オリジナルデータ，水部ポリゴン及び低密度ポリゴン の重ね合せ図」の 2 種類を作成するものとする。ただし，航空レーザ用写真地図データが作成されていない場合は，航空レーザ用写真地図データに代えてオリジナルデータから作成さ れた陰影段彩図等とすることができる。
3 フィルタリング点検図は，国土基本図の図郭単位で作成するものとする。
4 フィルタリング点検図は，格子間隔の地図情報レベルに対応した縮尺で出力するものとす る。
5 「航空レーザ用写真地図データ及び等高線データの重ね合せ図」における等高線の間隔及 び色区分は，次表を標準とする。また，計曲線には等高線データ数値を付加し，凹地につい ては凹地記号をそれぞれ付加するものとする。

等高線種類	間 隔	色 区 分
計曲 線	5 m	黄 色
主 曲 線	1 m	赤 色

6 「航空レーザ用写真地図データ，オリジナルデータ，水部ポリゴン及び低密度ポリゴンの重ね合せ図」における色区分は，次表を標準とする。

項	色 区
オリジナルデータでグラウンドデータとして採用された点	赤 色
オリジナルデータでフィルタリングにより削除された点	黄 色
水部ポリゴンの境界線	紺 色
低密度ポリゴンの境界線	緑 色

7 フィルタリング点検図は，図郭から格子間隔の 10 倍以上の距離を延伸した範囲について作成するものとする。
（フィルタリングの点検）
第442条 フィルタリングの点検は，フィルタリング点検図を用いて次の各号について行らものとす る。

一 第438条第3項に規定するフィルタリング対象項目のオリジナルデータ採否の適否
二 水部ポリゴン範囲の適否
三 低密度ポリゴン範囲の適否
2 フィルタリングについて，点検測量を全体の 5 パーセント実施するものとする。
3 フィルタリングの良否の判断が困難な場合は，図形編集装置を用いた断面表現等により点

検するものとする。
4 フィルタリングの点検結果は，精度管理表にとりまとめるものとする。

第 9 節 グリッドデータの作成
（グリッドデータの作成）
第 443 条 「グリッドデータの作成」とは，グラウンドデータから内挿補間により格子状の標高デー夕を作成する作業をいう。
2 グリッドデータの標高値の精度は，次表を標準とする。

項	目
標高値（標準偏差）	
格子間隔内にグラウンドデータがある場合	0.3 m 以内
格子間隔内にグラウンドデータがない場合	2.0 m 以内

3 グリッドデータは，国土基本図の図郭単位で作成するものとする。
4 グリッドデータへの標高値の内挿補間法は，地形形状及びグリッドデータの使用目的並び にグラウンドデータの密度を考慮し，T I N，最近隣法を用いることを標準とする。ただし， データの欠損が多い箇所については，K r i g i n g 法により内挿補間することができるも のとする。
5 グリッドデータの各点については，必要に応じてフィルタリング状況又は水部状況を表す属性を付与するものとする。
6 グリッドデータにおける標高値は，0．1メートル位とする。
（グリッドデータ点検図の作成）
第444条 グリッドデータ点検図は，作成されたグリッドデータに異常がないか及び隣接図との接合 が適切に行われているかを点検するために作成するものとする。
2 グリットデータの点検を図形編集装置により行ら場合には，グリッドデータ点検図作成を省略することができる。
3 グリッドデータ点検図は，国土基本図の図郭単位に作成された陰影段彩図を標準とし，低密度ポリゴンの境界線を重ね合わせて表示するものとする。
4 陰影段彩図は，地図情報レベル5000から10000を標準として作成するものとする。
5 作業地域に隣接して既存データが存在する場合は，作業地域の外周に格子間隔の 10 倍以上 の距離を延伸した範囲について作成することを標準とする。
（グリッドデータの点検）
第445条 グリッドデータの点検は，グリッドデータ点検図又は図形編集装置を用いて次の各号につ いて行らものとする。
一 所定の格子間隔等の適否
二 標高値の誤記及び脱落
三 水部の範囲
四 低密度の範囲

五 接合の良否
2 グリッドデータの点検結果は，精度管理表にとりまとめるものとする。

第10節 等高線データの作成
（等高線データの作成）
第446条 「等高線データの作成」とは，グラウンドデータ又はグリッドデータから自動生成により等高線データを作成する作業をいう。
2 等高線データの作成は，次のとおりとする。
一 等高線データは，国土基本図の図郭単位で作成するものとする。
二 グラウンドデータ又はグリッドデータの間隔は，次表を標準とする。なお，グラウンド データ及びグリッドデータは，作業地域の外周を格子間隔の 10 倍以上の距離を延伸した範囲のものを使用することとする。

地図情報 Vベル	主曲線	計曲線	グラウンドデータ，グリッドデータ		
			約 5 m		
500	1 m	5 m	\bigcirc	-	-
1000	1 m	5 m	\bigcirc	-	-
2500	2 m	10 m	\bigcirc	\bigcirc	-
5000	5 m	25 m	\bigcirc	\bigcirc	\bigcirc

（等高線データの点検）
第447条 等高線データの点検は，図形編集装置，出力図等を用いて行うものとする。
2 点検内容は，次のとおりとする。
一 等高線データの誤記及び脱落
二 等高線データ形状の良否

第11節 数値地形図データファイルの作成
（要旨）
第448条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って数値地形図 データファイルを作成し，電磁的記録媒体に記録する作業をいう。
2 本節において数値地形図データファイルは，次の各号のとおりとする。
一 オリジナルデータ
二 グラウンドデータ
三 グリッドデータ
四 水部ポリゴンの境界線
五 低密度ポリゴンの境界線
六 航空レーザ用写真地図データ
七 位置情報ファイル
八 等高線データ
九 格納データリスト

第12節 品質評価
（品質評価）
第449条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第13節 成果等の整理
（メタデータの作成）
第450条 数値地形図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第451条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 作業記録
三 精度管理表
四 品質評価表
五 メタデータ
六 その他の資料

第11章 地図編集
第1節 要旨
（要旨）
第452条 「地図編集」とは，既成の数値地形図データを基に，編集資料を参考にして，必要とする表現事項を定められた方法によって編集し，新たな数値地形図データ（以下「 編集原図デー夕」という。）を作成する作業をいう。
（基図データ）
第453条 「基図データ」とは，編集原図データの骨格的表現事項を含む既成の数値地形図データを いう。

2 基図データは，次の各号を満たさなければならない。
一 内容が新しく，かつ，必要な精度を有するもの。
二 編集原図データの地図情報レベルと同等又はそれより小さい地図情報レベルのもの。
（地図編集）
第454条 地図編集は，原則として編集原図データの地図情報レベルで行うものとする。
（編集資料）
第455条 「編集資料」とは，基準点測量成果，地図（数値地形図データ及び写真地図データを含 む。），空中写真，数値図化データ及びその他の資料をいう。
2 編集資料は，基図データと同様に，内容が新しく，かつ，必要な精度及び信頼性を有する ものでなければならない。
（工程別作業区分及び順序）
第456条 工程別作業区分及び順序の標準は，次の各号のとおりとする。
一 作業計画
二 資料収集及び整理
三 編集原稿データの作成
四 数値編集
五 数値編集地形図データファイルの作成
六 品質評価
七 成果等の整理

第2節 作業計画

（要旨）
第457条 作業計画は，第10条の規定によるほか，基図データ及び編集資料を考慮し，作業工程別に作成するものとする。

第3節 資料収集及び整理
（要旨）
第458条「資料収集及び整理」とは，基図データ及び編集資料を収集し，内容を点検の上，後続の作業工程を考慮して整理する作業をいう。
2 収集した資料は，図式の項目別，地域別，図葉別等に分類及び整理するものとする。
3 内容の正確さ及び信頼性について分析及び評価するものとする。

第4節 編集原稿データの作成
（要旨）
第459条 「編集原稿データの作成」とは，基図データ及び編集資料を図形編集装置に表示させ又は取り込む作業をいう。
2 図形編集装置の構成は，第112条の規定を準用する。
（編集原稿データの作成）
第460条 編集原稿データの作成は，基図データ及び編集資料の必要な部分を結合し又は切り出して作成するものとする。

第5節 数値編集

（要旨）
第461条 本章において「数値編集」とは，編集資料を参考に，図形編集装置を用いて編集原図デー夕を作成する作業をいう。
（編集原図データの作成）
第462条 編集原図データの作成は，図形編集装置を用いて編集原稿データを付録 7 に基づき，適切

に取捨選択，総合描示等の編集を行い，編集原図データを作成するものとする。
2 注記データは，基図データ及び編集資料又はその他の資料に基づき，注記の位置，字大，字隔等を決定し，その属性等も併せて作成するものとする。
（接合）
第463条 隣接図との接合は，図郭線上において，相互の表現事項が正しい関係位置となるように行 うものとする。
2 編集原図データを図葉単位で作成する場合は，隣接する図郭の接合部における表示事項及 び属性は，図郭線上において座標を一致させるものとする。

第6節 数値地形図データファイルの作成
（数値地形図データファイルの作成）
第464条 本章において「数値地形図データファイルの作成」とは，製品仕様書に従って編集原図デ ータから数値地形図データファイルを作成し，電磁的記録媒体に記録する作業をいう。

第7節 品質評価
（品質評価）
第465条 数値地形図データファイルの品質評価は，第43条の規定を準用する。

第8節 成果等の整理

（メタデータの作成）
第466条 数値地形図データファイルの作成は，第44条の規定を準用する。
（成果等）
第467条 成果等は，次の各号のとおりとする。
一 数値地形図データファイル
二 基図データ，編集原図データ等出力図
三 精度管理表
四 品質評価表
五メタデータ
六 その他の資料

第12章 基盤地図情報の作成

第1節 要旨
（要旨）
第468条 「基盤地図情報の作成」とは，第7条に規定する基盤地図情報を作成する作業をいう。
2 基盤地図情報の作成は，既存の基盤地図情報を位置の基準として新たな数値地形図データ を作成する作業を含むものとする。
3 基盤地図情報の製品仕様書には，項目及び基準に関する省令第 1 条に規定する項目以外の

数値地形図データを含めることができる。
4 基盤地図情報のうち，測量の基準点の設置は第 2 編の規定を準用し，本章では数値地形図 データの作成について規定するものとする。
5 既に基盤地図情報が存在している作業地域において，新たに数値地形図データの測量を行 う場合は，基本法第16条第 1 項の規定に基づく基本法第 2 条第 3 項の基盤地図情報の整備に係る技術上の基準（平成19年国土交通省告示第1144号。以下「技術上の基準」という。）の定める技術的基準に従い，基盤地図情報を位置の基準として作成するものとする。なお，基 となる基盤地図情報の精度等は，メタデータ等によってあらかじめ確認しなければならない。
6 基盤地図情報を利用して実施する修正測量，地図編集等については，図葉間の調整を図る ことができる。

第2節 基盤地図情報の作成方法
（基盤地図情報の作成方法）
第469条 基盤地図情報の作成（更新を含む。以下同じ。）方法は，新たな測量作業による方法及び既存の測量成果等の編集により作成する方法によるものとする。
2 新たな測量作業による方法は，第2章から前章までの規定を適用する。
3 既存の測量成果等を編集する方法は，第3節の規定を適用する。
4 新たな測量作業によって基盤地図情報を作成する場合の測量方法は，製品仕様書に規定す る要求事項を満たす適切な整備方法を選択するものとする。
5 「既存の測量成果等」とは，基本測量成果及び公共測量成果に，工事 「喛工図その他の地図 に準ずる図面類（以下「地図に準ずる資料」という。）を加えたものをいう。
6 基盤地図情報の作成は，複数の作成方法を組み合わせて行うことができる。

第3節 既存の測量成果等の編集による基盤地図情報の作成

（要旨）
第 470 条 「既存の測量成果等の編集による基盤地図情報の作成」とは，当該作業地域における既存 の基本測量成果，公共測量成果及び地図に準ずる資料を用いて新たな基盤地図情報を作成す ることをいう。
（工程別作業区分及び順序）
第471条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 既存の測量成果等の収集及び整理
三 基盤地図情報を含む既存の測量成果等の調整
四 基盤地図情報項目の抽出
五 品質評価
六 成果等の整理

第4節 作業計画

（要旨）
第472条 作業計画は，第10条の規定によるほか，既存の測量成果等を考慮し，作業工程別に作成す るものとする。

第5節 既存の測量成果等の収集及び整理

（要旨）
第 473 条 「既存の測量成果等の収集及び整理」とは，当該作業地域における既存の基本測量成果及 び公共測量成果に加えて，工事竣工図その他の地図に準ずる資料を収集し，内容を点検の上，後続の作業を考慮して整理する作業をいう。
2 作業着手前に，当該作業地域における既存の基本測量成果及び公共測量成果に加えて，工事竣工図その他の地図に準ずる資料を収集するものとする。
3 基盤地図情報の製品仕様書に適合する既存の測量成果等を選定し，整理する。なお，既存 の測量成果等は，基盤地図情報の項目ごとに選定することができる。
4 既存の基本測量成果，公共測量成果及び地図に準ずる資料の収集に当たっては，併せてデ ータの空間範囲，時間範囲，品質等を把握できる製品仕様書，メタデータ等の資料を収集す るものとする。
5 収集した既存の測量成果等の中の基盤地図情報の採否については，既存の測量成果等と基盤地図情報の取得基準を比較し碓認するものとする。
6 既存の測量成果等に含まれる地物の品質が，基盤地図情報に適合しているか又は調整によ り適合できるかを確認するものとする。
7 既存の測量成果等の采譜（更新履歴，作成方法等）を調心，基盤地図情報に適合している か確認するものとする。
8 地図に準ずる資料を用いる場合は，工事の施工状況等に基づき現地との整合性を確認する ものとする。
9 基盤地図情報の基情報となる既存の測量成果等が複数存在する場合は，最も位置精度及び現状を適切に反映している既存の測量成果等を選定するものとする。

第 6 節 基盤地図情報を含む既存の測量成果等の調整

（要旨）
第474条 「基盤地図情報を含む既存の測量成果等の調整（以下「位置整合性等の向上」とい う。）」とは，既存の測量成果等に記載されている地物について，図葉間の接合及び相対位置の調整を行うことをいう。
2 隣接する区域の基盤地図情報との調整は，隣接する計画機関との協議の上，方法，時期等 を決定するものとする。
（位置整合性等の向上の区分）
第475条 基盤地図情報の位置整合性等の向上の作業区分及び作業内容は，次のとおりとする。
一 接合は，異なる計画機関により整備された又は異なる時期に作成された基盤地図情報の

境界部において，同一項目の座標を一致させる作業とする。
二 相対位置の調整は，基盤地図情報の項目間の相対的な位置関係を調整する作業とする。
（接合）
第476条 基盤地図情報の接合は，技術上の基準を適用する。
（相対位置の調整）
第477条 基盤地図情報の相対位置の調整は，技術上の基準を適用する。
2 前項の技術上の基準が規定する既存の基盤地図情報の利用基準に適合する基盤地図情報を相対位置の基準とする場合，他の基盤地図情報の項目との整合をとることができる。
3 相対位置の調整は，次の各号によるものとする。
一 位相の調整は，基盤地図情報間の包含，一致，オーバーラップ，接合及び離接の関係に ついて，製品仕様書の規定を満たすよう，相対位置を調整する作業とするものとする。
二 相対距離の調整は，基盤地図情報間の相対距離に関して，製品仕様書の規定を満たすよ う，相対位置を調整する作業とするものとする。

第7節 基盤地図情報項目の抽出

（要旨）
第478条 「基盤地図情報項目の抽出」とは，位置整合性等を向上させた既存の測量成果等から，基盤地図情報項目を抽出し，基盤地図情報のデータ集合を作成する作業をいう。
2 抽出する項目の範囲は，項目及び基準に関する省令に定める項目が規定された製品仕様書 に従うものとする。
3 基盤地図情報のデータ集合は，製品仕様書に規定する符号化仕様に従うものとする。

第8節 品質評価

（要旨）
第479条 基盤地図情報の品質評価は，第43条の規定を準用する。

第 9 節 成果等の整理
（メタデータの作成）
第480条 基盤地図情報のメタデータの作成は，第44条の規定を準用する。
（成果等）
第481条 成果等は，次の各号のとおりとする。
一 基盤地図情報又は基盤地図情報を含む数値地形図データ
二 精度管理表
三 品質評価表
四 メタデータ
五 その他の資料

第 4 編 三次元点群測量
第1章 通則
第1節 要旨
（要旨）
第482条 本編は，三次元点群測量の作業方法等を定めるものとする。
2 「三次元点群測量」とは，応用測量等に用いる三次元点群データを作成する作業をいう。
3 「三次元点群データ」とは，地形を表す三次元の座標データ及びその内容を表す属性デー タを，計算処理が可能な形態で表現したものをいう。
4 「観測時期間の標高の較差」とは，異なる時期で取得された三次元点群データの高さ方向 の変化量をいう。

第2節 製品仕様書の記載事項

（製品仕様書）
第483条 製品仕様書は，当該三次元点群測量の概覧，適用範囲，データ製品識別，データの内容及 び構造，参照系，データ品質，データ製品配布，メタデータ等について体系的に記載するも のとする。

第3節 測量方法

（要旨）
第484条 製品仕様書で定めた三次元点群データを作成するための測量方法は，第2章又は第3章の規定に示す方法に基づき実施するものとする。

第2章 地上レーザ点群測量
第1節 要旨
（要旨）
第485条 「地上レーザ点群測量」とは，地上レーザスキャナを用いて地形，地物等を観測し，三次元点群データを作成する作業をいう。
（工程別作業区分及び順序）
第486条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 標定点の設置
三 地上レーザ観測
四 三次元点群データ編集
五 三次元点群データファイルの作成
六 品質評価
七 成果等の整理

第2節 作業計画

（要旨）
第487条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。

第3節 標定点の設置

（要旨）
第488条 本章において「標定点の設置」とは，水平位置及び標高の精度を持った既知点のほかに座標変換により地上レーザスキャナに水平位置，標高及び方向を与えるための基準となる点 （以下本章において「標定点」という。）を設置する作業をいい，原則として平面直角座標系で行うものとする。

（標定点の配置）

第489条 標定点の配置は，次項に規定するもののほか，第137条の規定を準用する。
2 標定点は，三次元点群測量を実施する期間，保持できる場所に設置することを原則とし，基準点も同様とする。なお，保持が困難な場合は予備の標定点を設置するものとする。

（標定点の精度）

第490条 標定点の精度は，水平位置（標準偏差）が 0.1 メートル以内，標高（標準偏差）が 0.1 メー トル以内を標準とする。
2 標定点間の距離の許容範囲は，次表を標準とする。

距 離	許容範囲	備 考
20 m 未満	10 mm	Sは点間距離の計算値 （m位）をいう。
20m以上	S／2， 000	

3 標定点間の標高の閉合差の許容範囲は，次表を標準とする。

項 目	許容範囲	備 考
環閉合差	$40 \mathrm{~mm} \sqrt{\mathrm{~S}}$	Sは観測距離（片道， km 位）とする。 既知点間での閉合差$\quad 50 \mathrm{~mm} \sqrt{\mathrm{~S}}$

（方法）
第491条 標定点の設置は，第3編第2章第4節第1款のTS点の設置に準じて行うものとする。
2 標定点の標高は，レベル等による水準測量に準じた観測により求めることができる。

（成果等）

第492条 成果等は，次の各号のとおりとする。
一 標定点成果表
二 地上レーザスキャナ・標定点配置図及び水準路線図
三 標定点測量簿及び同明細簿

四 精度管理表
五 その他の資料

第4節 地上レーザ観測
（要旨）
第493条 本章において「地上レーザ観測」とは，地上レーザスキャナを用いて地形，地物等を観測 し，平面直角座標系に変換してオリジナルデータを作成する作業をいう。
2 同一地域において，複数時期の三次元点群データを取得する場合の観測条件は，対象及び観測時期間の標高の較差の許容範囲に基づき，次表を標準とする。

対象	観測時期間の標高の較差 （標準偏差）	観測条件	
		放射方向の観測点間隔	最小入射角［度］
水平面	5 mm	250 mm	4
水平面	10 mm	500 mm	2
斜面	20 mm	1000 mm	－

3 表面に凸凹や起伏のある地形は，前項を基準として観測時期間の標高の較差の許容範囲及 び観測条件を設定するものとする。
4 観測時期間の標高の較差の許容範囲を設定しない場合の観測条件は，三次元点群データの要求密度等に基づき設定するものとする。
（使用する地上レーザスキャナの性能等）
第494条 使用する地上レーザスキャナの性能等は，第142条の規定を準用する。
（器械点と後視点の選定）
第495条 器械点と後視点は，水平位置及び標高の精度を持った既知点並びに標定点（以下本章にお いて「標定点等」という。）を使用する。
2 器械点は，地上レーザスキャナが堅ろうに整置できなければならない。

（標識の設置）

第496条 標識の設置は，第144条の規定を準用する。ただし，地物を標識に用いてはならない。
（方法）
第497条 方法は，次項及び第3項に規定するもののほか，第143条の規定を準用する。
2 地上レーザ観測は，器械点と後視点による方法で行うことを原則とし，第493条第4項によ り観測条件等を設定した場合は，相似変換による方法及び後方交会による方法で行うことが できる。
3 第493条第2 項又は第3項に基づいて行う場合，地上レーザスキャナの器械高は，次の各号 のとおり整置するものとする。

一 新規に観測する場合は，器械高をミリメートル位で観測するものとする。
二 改測で観測する場合は，新規の観測時の器械高に対し，標高較差の許容範囲の 3 分の 1以内を標準として整置するものとする。
4 反射強度等を用いた判読の資料とするため，地上レーザスキャナの位置から作業地域の写真を撮影することを原則とする。

（標識の観測）

第498条 標識の観測は，第145条の規定を準用する。

（観測点の選定）

第499条 観測点の選定は，第493条第2項に規定する放射方向の観測点間隔及び最小入射角に準じ て行うものとする。
2 内挿処理による観測点の細密化は，行ってはならない。
（平面直角座標系への変換）
第500条 平面直角座標系への変換は，本条に規定するもののほか，第147条の規定を準用する。
2 平面直角座標系への変換は，原則として行うものとする。
3 平面直角座標系への変換における標定点等との水平位置の残差は，50ミリメートル以内と する。ただし，相似変換による方法においての標定点等との標高の残差は，第493条第4項の規定により設定した精度以内とする。

4 平面直角座標系への変換の結果は，精度管理表にとりまとめるものとする。

第5節 三次元点群データ編集
（要旨）
第501条 本章において「三次元点群データ編集」とは，オリジナルデータから地形を捉えていない点を除去してグラウンドデータを作成し，所定のデータ構造に構造化する作業をいう。

（三次元点群データ編集システム）

第502条 三次元点群データ編集に使用するシステムは，次の各号の構成及び性能を有するものとす る。
一 電子計算機，スクリーンモニター，マウス等を有すること。
二 任意の視点からの三次元表示ができること。
三 $\mathrm{X}, ~ \mathrm{Y}, ~ \mathrm{Z}$ の座標値の修正及び記録できる機能を有すること。
（方法）
第503条 三次元点群データ編集は，三次元点群データ編集システムを用いてオリジナルデータを三次元で表示し，目視にて地形以外から反射してきた観測点を除去し，グラウンドデータを作成する。
（構造化）
第504条 本章において「構造化」とは，グラウンドデータを決められた構造のデータに変換する作業をいう。なお，必要に応じてブレークラインを追加できるものとする。
2 構造化は，不整三角網（T I N）又はグリッド構造を原則とする。
3 構造化の方法は，グラウンドデータの密度や作業地域の形状に応じて決定するものとする。
4 不整三角網への構造化は，地形の形状に応じて最適な方法を採用するものとする。
5 グリッドへの構造化は，最近隣法又は不整三角網からの内挿を原則とする。

第6節 三次元点群データファイルの作成
（要旨）
第505条 本章において「三次元点群データファイルの作成」とは，製品仕様書に従ってグラウンド データ又は変換した構造化データから三次元点群データファイルを作成し，電磁的記録媒体 に記録する作業をいう。
2 三次元点群データ説明書は，付録7を使用することができる。

第7節 品質評価
（品質評価）
第506条 三次元点群データファイルの品質評価は，第 43 条の規定を準用する。

第8節 成果等の整理
（メタデータの作成）
第507条 三次元点群データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第508条 成果等は，次の各号のとおりとする。
一 三次元点群データファイル
二 オリジナルデータ
三 観測図
四 精度管理表
五 品質管理表
六 メタデータ
七 その他の資料

第3章 UAV写真点群測量
第1節 要旨
（要旨）
第509条 「UAV写真点群測量」とは，UAVにより地形，地物等を撮影し，その数値写真を用い て三次元点群データを作成する作業をいう。
2 UAV写真点群測量は，裸地等の対象物の認識が可能な区域に適用することを標準とする。
（工程別作業区分及び順序）
第510条 工程別作業区分及び順序は，次のとおりとする。
一 作業計画
二 標定点及び検証点の設置
三 撮影
四 三次元形状復元計算
五 三次元点群データ編集
六 三次元点群データファイルの作成
七 品質評価
八 成果等の整理

第2節 作業計画
（要旨）
第511条 作業計画は，第10条の規定によるほか，工程別に作成するものとする。
2 作成する三次元点群データの位置精度は，作業範囲において観測した三次元点群データの検証を行う点（以下本章において「検証点」という。）の位置座標と，この地点に相当する三次元点群データが示す位置座標の X，Y，Z成分の較差の許容範囲により， 0.05 メートル以内， 0.10 メートル以内又は 0.20 メートル以内のいずれかを標準とする。

第3節 標定点及び検証点の設置

（要旨）
第512条 「標定点及び検証点の設置」とは，三次元形状復元計算に必要となる水平位置及び標高の基準となる点（以下本章において「標定点」という。）並びに検証点を設置する作業をいう。 2 標定点及び検証点には対空標識を設置する。
（対空標識の規格及び設置等）
第513条 対空標識の規格及び設置等は，第219条の規定を準用する。
（標定点及び検証点の配置）
第514条 標定点は，作業地域の形状及び比高が大きく変化するような箇所，撮影コースの設定，地表面の状態等を考慮しつつ，次の各号のとおり配置するものとする。
一 標定点は，作業地域を囲むように配置する点（以下「外側標定点」という。）及び作業地域内に配置する点（以下「内側標定点」という。）で構成する。
二 外側標定点は，作業地域の外側に配置することを標準とする。
三 内側標定点は，作業地域内に均等に配置することを標準とする。
四 標定点の配置間隔は，作成する三次元点群データの位置精度に応じて，以下の表を標準 とする。

なお，外側標定点は 3 点以上，内側標定点は 1 点以上設置するものとする。

位置精度	隣接する外側標定点 間の距離	任意の内側標定点とその点 を囲む各標定点との距離
0.05 m 以内	100 m 以内	200 m 以内
0.10 m 以内	100 m 以内	400 m 以内
0.20 m 以内	200 m 以内	600 m 以内

五 計画時の作業地域内において最も標高の高い地点及び最も標高の低い地点には，標定点 を設置する。なお，これらの標定点は，外側標定点又は内側標定点の一部とすることがで きる。
2 検証点は，標定点とは別に，次の各号のとおり配置するものとする。
一 検証点は，標定点からできるだけ離れた場所に，作業地域内に均等に配置することを標準とする。
二 設置する検証点の数は，設置する標定点の総数の半数以上（1 未満の端数があるときは，端数は切り上げる。）を標準とする。
三 検証点は，平坦な場所又は傾斜が一様な場所に配置することを標準とする。
（方法）
第515条 標定点並びに検証点の位置及び標高は，第3編第2章第4節第1款のTS点の設置に準じ た観測により求めるものとする。ただし，作成する三次元点群データの位置精度が 0.05 メー トル以内の場合には，第117条に規定するTS等を用いるTS点の設置に準じて行らものとす る。
2 標定点及び検証点の観測結果については，精度管理表にまとめるものとする。
3 T S 等を用いる場合は，第627条第3項の規定を準用する。
4 キネマティック法，R T K 法又はネットワーク型 R T K 法によるT S 点の設置は，第118条及び第119条に準じて行うものとする。いずれの方法においても，観測は2セット行うものと する。 1 セット目の観測値を採用値とし，2セット目を点検値とする。セット間の格差の許容範囲は，X及びY成分は20ミリメートル，Z成分は30ミリメートルを標準とする。

（成果等）

第516条 成果等は，次の各号のとおりとする。
一 標定点及び検証点成果表
二 標定点及び検証点配置図
三 標定点並びに検証点測量簿及び同明細簿
四 精度管理表
五 その他の資料

第4節 撮影
（要旨）

第517条 本章において「撮影」とは，UAVを用いて三次元形状復元計算用の数値写真を撮影する作業をいう。
（使用するU A V の性能等）
第518条 撮影に使用するUAVの性能等は，第224条の規定を準用する。
（使用するデジタルカメラの性能等）
第519条 撮影に使用するデジタルカメラの性能等は，第225条の規定を準用する。

（撮影計画）

第520条 撮影計画は，撮影区域ごとに，作成する三次元点群データの位置精度，地上画素寸法，対地高度，使用機器，地形形状，土地被覆，気象条件等を考慮して立案し，撮影計画図として まとめるものとする。
2 撮影する数值写真の地上画素寸法は，作成する三次元点群データの位置精度に応じて，次表を標準とする。

位置精度	地上画素寸法
0.05 m 以内	0.01 m 以内
0.10 m 以内	0.02 m 以内
0.20 m 以内	0.03 m 以内

3 対地高度は，\｛（地上画素寸法）\div（使用するデジタルカメラの 1 画素のサイズ）\times（焦点距離）\} 以下とし, 地形や土地被覆, 使用するデジタルカメラ等を考慮して決定するもの とする。
4 撮影基準面は，撮影区域に対して一つを定めることを標準とするが，高低差の大きい地域 にあっては，U A V 運航の安全を考慮し，数コース単位に設定することができる。
5 デジタルカメラの焦点距離は，レンズの特性や地形等の状況によって決定するものとする。決定した焦点距離は，撮影終了まで固定することを標準とする。ただし，地形形状等からオ ートフォーカスを使用することが適切であると判断される場合は，この限りではない。
6 UAV の飛行速度は，数値写真が記録できる時間以上に撮影間隔がとれる速度とする。
7 同一コースは，直線かつ等高度の撮影となるように計画する。
8 撮影後に実際の写真重複度を確認できる場合には，同一コース内の隣接数値写真との重複度が 80 パーセント以上，隣接コースの数値写真との重複度が 60 パーセント以上を確保できる よう撮影計画を立案することを標準とする。撮影後に写真重複度の確認が困難な場合には，同一コース内の隣接数値写真との重複度は90パーセント以上，隣接コースの数値写真との重複度は60パーセント以上として撮影計画を立案するものとする。
9 外側標定点を結ぶ範囲のさらに外側に，少なくとも 1 枚以上の数値写真が撮影されるよう，撮影計画を立案するものとする。
10 撮影計画は，撮影時の明るさや風速，風向，地形，地物等の経年変化等により，現場で

の見直しが生じることを考慮しておく。
（機器の点検と撮影計画の確認）
第521条 機器の点検と撮影計画の確認は，第228条の規定を準用する。
（撮影飛行）
第522条 UAVによる撮影飛行は，第229条の規定を準用する。

（撮影結果の点検）

第523条 撮影の直後に，現地において撮影結果の点検を行うものとする。
2 撮影結果の点検は，次の各号について行い，精度管理表を作成し，再撮影が必要か否かを判定するものとする。

一 撮影区域
二 数値写真の画質
三 隣接数値写真間の重複度
四 隠蔽部の有無
五 全ての標定点及び検証点が適切に撮影できているか
3 数値写真の画質は，全ての写真を対象に，ボケ，ブレ，ノイズ等について点検するものと する。

4 数值写真間の重複度は，撮影結果から，主点間の距離が長い地点等重複度が小さいと考え られる箇所を複数抜き取り，撮影区域等を元に計算する。ただし，数值写真重複度の確認が困難であって，同一コース内の隣接数値写真との重複度を 90 パーセント以上として撮影計画 を立案している場合には，点検を省略できるものとする。

5 隠蔽部の有無は，三次元点群データ作成に障害がないかを点検するものとする。
（再撮影）
第524条 撮影結果の点検により，再撮影の必要がある場合は，第231条の規定を準用する。
（成果等）
第525条 成果等は，次の各号のとおりとする。
一 撮影計画図
二 数値写真
三 撮影記録
四 撮影標定図
五 精度管理表
六 その他の資料

第5節 三次元形状復元計算
（要旨）

第526条 「三次元形状復元計算」とは，撮影した数値写真及び標定点を用いて，数値写真の外部標定要素及び数値写真に撮像された地点（以下本章において「特徴点」という。）の位置座標 を求め，地形，地物等の三次元形状を復元し，オリジナルデータを作成する作業をいう。
2 三次元形状復元計算は，特徴点の抽出，標定点の測定，外部標定要素の算出，三次元点群 データの生成までの一連の処理を含むものとする。
3 三次元形状復元計算に用いる撮像素子寸法及び画素数は，デジタルカメラのカタログ値を採用し，焦点距離の初期値は，デジタルカメラのカタログの焦点距離の値を用いるものとす る。
4 三次元形状復元計算は，分割して実施しないことを標準とする。
5 カメラのキャリブレーションについては，三次元形状復元計算において，セルフキャリブ レーションを行うことを標準とする。

（三次元形状復元計算結果の点検）

第 527 条 三次元形状復元計算の結果は，三次元形状復元計算ソフトの機能に応じて点検するものと する。
2 三次元復元計算結果の点検結果は，精度管理表にとりまとめるものとする。
（標定点の残差及び検証点の較差の点検）
第 528 条 三次元形状復元計算で得られる標定点の残差が，X，Y，Zのいずれの成分も，作成する三次元点群データの位置精度以内であることを点検する。
2 あらかじめ求めた検証点の位置座標と，三次元形状復元計算で得られた検証点の位置座標 との較差が，X，Y，Zのいずれの成分も，作成する三次元点群データの位置精度以内であ ることを点検する。
3 点検のために，必要に応じてオルソ画像を作成することができるものとする。
4 点検の結果，精度を満たさない場合には，不良写真の除去及び特徴点の修正を行った上で，再度三次元形状復元計算を行い，点検を行うものとする。こうした処理を行っても精度を満 たさない場合には，再撮影を行うものとする。
5 三次元形状復元計算ソフトで直接検証点の位置座標を求めることができない場合は，検証点の位置座標は，次の方法で求めるものとする。
一 平面位置は，第3項で作成したオルソ画像上で検証点の位置を確認し，座標を求める。
二 標高は，作成した三次元点群データを用いて，各検証点に対し平面座標上の距離が 15 セ ンチメートル以内であるような三次元点群データを抽出し，距離の重み付内挿法（Inverse Distance Weighted法：IDW法）で求める。
（成果等）
第529条 成果等は，次の各号のとおりとする。
一 オリジナルデータ
二 三次元形状復元計算ソフトが出力する情報
三 精度管理表

四 その他の資料

第6節 三次元点群データ編集
（要旨）
第530条 本章において「三次元点群データ編集」とは，オリジナルデータから必要に応じて異常点 の除去又は三次元点群データの補間等の編集を行ってグラウンドデータを作成し，所定の構造に構造化する作業をいう。

（三次元点群データ編集）

第531条 オリジナルデータを複数の方向から表示し，地形以外を示す特徴点及び成果に不要となる特徴点等の異常点を取り除くものとする。
2 オリジナルデータが必要な密度を満たさない場合は，必要に応じてT S 等を用いて現地補測を行い，三次元点群データを補間する。
3 異常点やオリジナルデータが必要な密度を満たさない場所が広範囲に分布する場合には，数値写真及び三次元形状復元計算結果を見直し，必要に応じて数値写真の再撮影又は三次元形状復元計算の再計算を行うものとする。
（構造化）
第532条 本章において「構造化」とは，グラウンドデータを決められた構造の構造化データに変換 する作業をいう。
2 構造化に当たっては，必要に応じてブレークラインを追加できるものとする。

第7節 三次元点群データファイルの作成
（要旨）
第533条 本章において「三次元点群データファイルの作成」とは，製品仕様書に従ってグラウンド データ又は変換した構造化データから三次元点群データファイルを作成し，電磁的記録媒体 に記録する作業をいう。
2 三次元点群データ説明書は，付録 7 を使用することができる。

第8節 品質評価
（品質評価）
第534条 三次元点群データファイルの品質評価は，第43条の規定を準用する。

第9節 成果等の整理
（メタデータの作成）
第535条 三次元点群データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第536条 成果等は，次の各号のとおりとする。

一 三次元点群データファイル
二 精度管理表
三 品質管理表
四メタデータ
五 その他の資料

第 5 編 応 用 測 量
第1章 通則
第1節 要旨
（要旨）
第537条 本編は，応用測量の作業方法等を定める。
2 「応用測量」とは，農用地の開発，改良，保全及び集団化に係る事業等の調査，計画，設計，施工，用地取得，換地及び管理等に用いられる測量をいう。

（応用測量の区分）

第538条 応用測量は，目的によって次のとおり区分するものとする。
一 確定測量
二 路線測量
三 河川測量
四 用地測量
五 その他の応用測量
2 応用測量は，農用地の開発，改良，保全及び集団化に係る事業等に付随する測量ごとに，必要に応じて，各測量作業を組み合わせて行うものとする。
（使用する成果）
第539条 応用測量は，基本測量成果に加え，基準点測量，水準測量，地形測量及び写真測量の成果 を使用して行うものとする。ただし，基準点測量成果等が必要な場合には，当該測量を実施 し，必要な成果を取得して行うものとする。
2 前項の規定により基準点測量を実施する場合は，第2編第2章の規定を準用する。
3 第1項の規定により水準測量を実施する場合は，第2編第3章及び第4章の規定を準用す る。
4 第1項の規定により地形測量及び写真測量を実施する場合は，第3編の規定を準用する。
5 第1項の規定により三次元点群測量を実施する場合は，第 4 編の規定を準用する。
（機器）
第540条 観測に使用する主要な機器は，次表に掲げるもの，又はこれらと同等以上のものを標準と
する。

（機器の点検及び調整）
第541条 観測に使用する機器の点検及び調整については，第35条及び第62条の規定を準用する。

（計算結果の表示単位）

第542条 座標値等の計算結果の表示単位等は，次表を標準とする。ただし，用地測量においては第 627条第6項の規定を準用する。

区分	方向角	距 離	標 高	座標値
単位	秒	m	m	m
位	1	0.001	0.001	0.001

2 計算を計算機で行う場合は，前項に規定する位以上の計算精度を確保し，計算結果は，前項に規定する位の次の位において四捨五入するものとする。
3 キネマティク法，R T K 法又はネットワーク型 R T K 法により標高を求めた場合は，国土地理院が提供するジオイド・モデルにより求めたジオイド高を用いて，楕円体高を補正して求めるものとする。
（標杭の材質，寸法等）
第543条 使用する標杭の材質，寸法等は，次表を標準とする。

名 称	材 質	杭の表示色	寸法（単位cm）
役 杭	木	青	$9 \times 9 \times 75$
	プラスチック	青	$9 \times 9 \times 70$
I P 杭	木・プラスチック	青	$9 \times 9 \times 90$
中 心 杭	木	赤	$6 \times 6 \times 60$
	プラスチック	赤	$7 \times 7 \times 60$
引照 点 杭	木	白	$9 \times 9 \times 75$
	プラスチック	白	$9 \times 9 \times 70$
仮 B M 杭	木	プラスチック杭の場合	$9 \times 9 \times 75$
	プラスチック	は黒色又は灰色	$9 \times 9 \times 70$
縦断変化点杭	木	赤	$6 \times 6 \times 60$
	プラスチック	赤	$7 \times 7 \times 60$
見 通 杭	木・プラスチック	白	$4.5 \times 4.5 \times 45$
用地幅杭	木	黄	$6 \times 6 \times 60$
	プラスチック	黄	$7 \times 7 \times 60$
距 離 標	コンクリート		$12 \times 12 \times 90$
	プラスチック		$9 \times 9 \times 90$
水準 基 標	コンクリート		$9 \times 9 \times 70$
	プラスチック		$9 \times 9 \times 70$
水 際 杭	木	白	$4.5 \times 4.5 \times 90$
	プラスチック	白	$4.5 \times 4.5 \times 70$
復 元 杭	木		$4.5 \times 4.5 \times 45$
境 界 杭補助基準点杭	木・プラスチック	黄	$4.5 \times 4.5 \times 45$
	木	プラスチック杭の場合	$6 \times 6 \times 60$
	プラスチック	は黒色又は灰色	$7 \times 7 \times 60$
用地境界仮杭	木・プラスチック	赤	$4.5 \times 4.5 \times 45$
用地境界杭	コンクリート	赤	$12 \times 12 \times 90$
	プラスチック	赤	$9 \times 9 \times 90$
保 護 杭	木	本杭と同色	$6 \times 6 \times 60$
	プラスチック		$7 \times 7 \times 60$

2 前項のほか形状，品質等は，JIS 規格を標準とする。
3 標杭を設置する位置の状況により，金属標，標識プレート，十字鋲，測量くぎ等を使用す ることができる。なお，測量くぎは，JIS 規格を標準とする。
4 標杭には，必要に応じ固有番号等を記録した I Cタグを取り付けることができる。

第2節 製品仕様書の記載事項

（製品仕様書）

第544条 製品仕様書は，当該応用測量の概覧，適用範囲，データ製品識別，データの内容及び構造 ，参照系，データ品質，データ製品配布，メタデータ等について体系的に記載するものとす る。

第2章 確定測量
第1節 要旨
（要旨）
第545条 確定測量とは，定められた条件に基づき，一筆地の境界点の位置を定め，これを現地に標示して，一筆地の形状及び地積を確定する作業をいう。
（方式）
第546条 確定測量は，地上測量による方式（以下この章において「地上法」という。）により行う ものとする。なお，地上法以外による場合は，計画機関と協議のうえ作業方法を定めるもの とする。

（作業区分及び順序）

第547条 作業区分及び順序は，次のとおりとする。ただし，計画機関が指示し，又は承認した場合 は，これを変更し又は一部を省略することができる。
— 地上法による測量
二 確定図の作成
三 地積測定
四 成果等の整理

（測量の基礎とする点）

第548条 確定測量の基礎とする点は，電子基準点，基本測量若しくは公共測量の成果又は国土調査法（昭和26年法律第180号）第19条第2項の規定により認証され若しくは同条第5項の規定に より指定された成果である点（以下この章において「既知点」という。）とする。

（誤差の限度）

第549条 確定測量の誤差の限度は，次表のとおりとする。

精 度 区 分	筆界点の位置誤差		筆界点間の計算距離と直接測定による距離と の差異の公差	地積測定の公差	適
	$\begin{aligned} & \text { 平均二 } \\ & \text { 乗誤差 } \end{aligned}$	公差			
$\begin{aligned} & \text { 甲 } \\ & \text { 二 } \end{aligned}$	7 cm	20 cm	$0.04 \mathrm{~m}+0.01 \sqrt{\text { S }} \mathrm{m}$	$(0.05+0.01 \cdot \sqrt{\mathrm{~F}}) \sqrt{\mathrm{F}} \mathrm{m}^{2}$	主として市街地地域
$\begin{aligned} & \hline \text { 甲 } \\ & \text { 三 } \end{aligned}$	15 cm	45 cm	$0.08 \mathrm{~m}+0.02 \sqrt{\text { S }} \mathrm{m}$	$(0.10+0.02 \cdot \sqrt{\text { F }}) \sqrt{\text { F }}{ }^{2}$	主として村落•農耕地域
乙	25 cm	75 cm	$0.13 \mathrm{~m}+0.04 \sqrt{\text { S }} \mathrm{m}$	$(0.10+0.04 \cdot \sqrt{F}) \sqrt{\text { F }}{ }^{2}$	上記以外の地域

2 精度区分とは，誤差の限度区分をいう。

3 筆界点の位置誤差とは，当該筆界点の，これを決定した与点に対する位置誤差をいう。
4 S は，筆界点間の距離（m）
5 Fは，一筆地の地積（ m^{2} ）
6 実作業においては上表の公差の 2 分の 1 を目標とする。

第2節 計 画

（要旨）
第550条 計画機関は，地図上で作業地域の概要を調査し，精度保持を考慮しながら，合理的かつ能率的に作業を遂行するために必要な各工程における基本方針を定め，測量計画を樹立するも のとする。

（境界調査）

第551条 計画機関は，測量実施に先だって，次の調査を行うものとする。
一 事業区域界
二 市町村界
三 地番区域界
四 一筆地の境界
2 前項の調査に基づき，現地に境界杭を設置し，その場所を図面（出来形図面等）に表示し，調査図を作成するものとする。
3 調査図には次の事項を表示する。
一 名称
二 番号
三 縮尺及び方位
四 事業区域界，市町村界，地番区域界及び一筆地の境界等
五 土地の所有権者等の権利者の氏名又は名称
六 長狭物の種別，所有者及び管理者の氏名又は名称
七 地番又は仮地番
八 地目
九 隣接する調査図の番号
十 作成年月日及び作成者の氏名

第3節 地上法
第1款 要旨
（要旨）
第552条 地上法は，現地において境界点の位置を確定する作業をいう。
（地上法の細分）
第553条 地上法の細分は，次のとおりとする。
— 作業計画

二 基準点測量
三 一筆地測量

第2款 作業計画
（作業計画）
第554条 作業計画は，第10条の規定によるほか地上法に必要な状況を把握し，地上法の細分ごとに作成するものとする。

第 3 款 基準点測量

（要旨）
第555条 基準点測量とは，既知点に基づき一筆地測量に必要な基準点の位置を定める作業をいう。

（実施方法）

第556条 基準点測量は，第2編第2章（基準点測量）の規定を準用して行うものとする。
2 基準点測量において，地籍調査作業規程準則第 43 条（参考 3 ）に規定する地籍図根三角点 は 3 級基準点と，地籍図根多角点は 4 級基準点とみなす。
（基準点の配置）
第557条 基準点は，作業地域の地形，区画の大小，測量の精度及び確定図の縮尺等を考慮して配置 するものとする。
22 級基準点以上の点を結ぶ最外周線により構成される区域は，当該作業区域を含むように努めなければならない。
3 基準点の配点密度は，次表を標準とする。
一 2 級基準点以上（ $1 \mathrm{~km}^{2}$ 当たり）

区	分
配 点 密 度	
主として宅地が占める地域及びその周辺の地域	3 点以上
主として田畑が占める地域及びその周辺の地域	2 点以上
主として山林，牧場又は原野が占める地域及びその周辺の地域	1 点以上

二 4 級基準点以上（ 1 図郭（ $30 \mathrm{~cm} \times 40 \mathrm{~cm}$ 又は $25 \mathrm{~cm} \times 35 \mathrm{~cm}$ ）当たり）

縮尺	平坦地	丘陵地	山 地
$1 / 500$	$5 \sim 12$	$5 \sim 14$	$7 \sim 20$
$1 / 1,000$	$12 \sim 40$	$15 \sim 50$	$20 \sim 60$

（注）1．平坦地とは，地形傾斜が 3° 以下，丘陵地とは $3^{\circ} \sim 15^{\circ}$ ，山地とは 15° 以上の地域とする。
2．平坦地で見通しが良好で，かつ，一筆の区画が整形大区画の場合又は測距

儀，T S 等又はGNSS測量機を使用する場合には，この標準より少なくて もよいものとする。
4 計画機関が必要と認める場合には， 3 級及び 4 級基準点のらち，多角網の交点及びそれに相当する点並びにこれらの点からの見通しの良好な他の点に，2点を1組として，作業地域 に均等に，永久標識を設置する。
配置密度は，次表を標準とする。

縮 尺	配置密度（ 1 図郭 $(30 \mathrm{~cm} \times 40 \mathrm{~cm}$ 又は $25 \mathrm{~cm} \times 35 \mathrm{~cm})$ 当たり）
$1 / 500$	$4 \sim 8$
$1 / 1,000$	$10 \sim 16$

（基準点の名称）

第558条 基準点は，基準点の級別区分に対応して冠字で区分し，番号を付すものとする。
2 冠字の区分は，次表のとおりとする。

等級区分	冠字の区分
1 級基準点	基 I
2 級基準点	基 II
3 級基蕉点	A
4 級基準点	B

（補助基準点）
第559条 作業地域の地形及び見通しの状況等により，4級基準点以上の基準点のみでは一筆地測量 を行うことが困難な場合には，補助基準点を設けることができる。
2 補助基準点は，次の方法により設置するものとする。
一 放射法
イ 測定辺長は，基準方向の辺長より短くしなければならない。
二 開放多角測量法
ィ 路線長は 200 m 以内とする。
口 辺数は， 2 以内とする。
八 辺長は，与点における基準方向の辺長より短く，かつ，新設点側の辺長は，与点側の
辺長より短くしなければならない。
3 観測及び測定方法は，4級基準点測量に準ずる。
4 補助基準点には，第384条の標杭を設置する。

第4款 一筆地測量

（要旨）
第560条 一筆地測量とは，境界調査の完了した一筆ごとの土地について，境界杭及び調査図に基づ いて，筆界及び地積に関する測量を行うことをいう。

（実施方法）

第561条 一筆地測量は，境界調査及び基準点測量が完了した後に基準点等を基礎として，T S 等又 はGNSS測量機を用いて境界点の座標を定めることにより行うものとする。
2 筆界点の測定は，放射法，割込法又はこれらを併用して行らものとする。
3 基準点等とは，基準点，地籍図根三角点，地籍図根多角点及び補助基準点をいう。
4 観測及び測定の方法は，次のとおりとする。
一 放射法による場合

区 分	方 法		較差の許容範囲
水平角観測	0.5 対回		-
鉛直角観測	0.5 対回		-
距離 測 定	2 回測定		5 mm

既知点と筆界点との距離は，測角の基準方法の辺長より短くしなければならない。
二 割込法による場合
イ 観測及び測定の方法は，放射法の場合に準ずる。
ロ 各測点間の距離の合計と既知点間の距離との較差の制限は，次のとおりとする。

$$
\begin{array}{ll}
10+\sqrt{\mathrm{S}} \quad(\text { 単位 }: \mathrm{cm}) \\
\text { ただし, } \mathrm{S}: \text { 測定辺長 }(\mathrm{m})
\end{array}
$$

（観測の点検）

第562条 観測の点検とは，前条により測定された境界点の座標値の点検を行う作業をいう。
2 点検は器械点毎に最低 1 点を，他の器械点から測定してその出合差をもつて点検する。
3 前項の出合差の点検ができないときは，他の器械点において測定した境界点からの点間距離を測定して点検する。
4 点検における出合差及び較差の制限は次のとおりとする。

区分	座標値の出合差	点間距離の較差
甲二	20 mm	$0.02+0.005 \sqrt{\mathrm{~S}} \mathrm{~m}$
甲三	40 mm	$0.04+0.01 \sqrt{\mathrm{~S}} \mathrm{~m}$
乙一	60 mm	$0.06+0.02 \sqrt{\mathrm{~S}} \mathrm{~m}$

備考：Sは，筆界点間の距離（単位m）

第4節 確定図の作成

（要旨）
第563条 確定図とは，確定測量図及び平板確定図をいい，その縮尺は，原則として，1／500又は 1／1，000とする。
2 縮尺は，土地の経済度，一筆地面積の広狭等を考慮し，計画機関の指示による。確定図に は，世界測地系によることを表示する。
（確定測量図）

第564条 地上法による確定測量図は，筆界点の座標値に基づいて仮作図を行い，図形その他の事項 に誤りがない事を確かめた後，原図用図紙に製図して作成するものとする。
2 図郭は，計画機関の指示による。
3 確定測量図は，字，小字，地番（仮地番），方位及び縮尺等を記入し，図式記号は，基準点，標定点及び空測基準点については付録 4 により，その他については「地籍図の様式を定 める総理府令」（昭和61年総理府令第54号）に準ずる。
4 原図用図紙は，厚さ 0.10 mm （ 400 番）のポリエステルフィルム又はこれと同等以上のものと する。
5 確定測量図は，自動製図機又はプロット精度 0.2 mm 以内の座標展開機を使用して作成するも のとする。

（平板確定図）

第565条 平板確定図は，確定測量図の作成後に誤り等の無い事を確かめた後作成するものとする。
2 平板確定図の図郭は，原則として，平面直角座標系の X 軸方向に 30 cm Y 軸方向に 40 cm ，又 はX軸方向に 25 cm Y 軸方向に 35 cm とする。
3 平板確定図は，計画機関の指示により，複製図を作成するものとする。
4 原図用図紙の大きさは，縦 29.7 cm ，横 42 cm （ A 3 版）以上とし，厚さ 0.127 mm （ 500 番）の ポリエステルフィルム又はこれと同等以上のものとする。
5 図式記号は，前条に準ずる。
6 複製図用図紙は，原図用図紙と同等以上のものとする。

第 5 節 地積測定

（要旨）
第566条 地積測定とは，一筆地測量の成果に基づき一定地域の地積を測定することをいう。
（方法）
第567条 地積測定は，原則として座標法又は数値三斜法によるものとする。
2 地積測定は，当該測量区域又は圃区，工区等毎に含まれる各筆の合計地積と，その区域の外周による地積が等しいかどうかを点検しなければならない。 その場合，倍面積にて点検するものとする。

第6節 成果等の整理

（成果等）
第568条 成果等は，次のとおりとする。
一 成果簿
（基準点測量，一筆地測量，地積測定）
二 観測（測定）手簿
（基準点測量，一筆地測量，地積測定）
三 観測記簿
（基準点測量）
四 計算簿（基準点測量，一筆地測量，地積測定）
五 点の記
（基準点測量）

七 確定測量図
八 平板確定図
九 平板確定図複製図
十 求積図（地積測定を数値三斜法で行う場合のみ）
十一 点検記録表
十二 精度管理表
2．記憶装置付の測角•測距儀を使用する場合は，観測データの打出し記録をもつて観測手簿 にかえることができる。

3 ．測量作業の種類別の成果等は，次表のとおりとする。

成果等の種類	該当する測量の種類		
	地上法		地積測定
	基準点測量	一筆地測量	
成 果 簿	\bigcirc	\bigcirc	\bigcirc
観測（測定）手簿	\bigcirc	\bigcirc	
観 測 記 簿	\bigcirc		
計 算 簿	\bigcirc	\bigcirc	\bigcirc
点の記	\bigcirc		
網 図	\bigcirc		
確定測量図		\bigcirc	
平板確定図		\bigcirc	
平板確定図複製図		\bigcirc	
求 積 図			\bigcirc
点検記録表		\bigcirc	\bigcirc
精度管理表	\bigcirc		\bigcirc

（図例）
2． 0

第3章 路線測量
第1節 要旨
（要旨）
第569条「路線測量」とは，線状築造物建設のための調査，計画，実施設計等に用いられる測量を いう。

2 「線状築造物」とは，道路，水路等幅に比べて延長の長い構造物をいう。
（路線測量の細分）
第570条 路線測量は，次に掲げる測量等に細分するものとする。
一 作業計画
二 線形決定
三 中心線測量
四 仮 B M設置測量
五 縦断測量
六 横断測量
七 詳細測量
八 用地幅杭設置測量

第2節 作業計画
（要旨）
第571条 作業計画は，第10条の規定によるほか，路線測量に必要な状況を把握し，路線測量の細分 ごとに作成するものとする。

第3節 線形決定

（要旨）
第572条 「線形決定」とは，路線選定の結果に基づき，地形図上の交点（以下「I P」という。） の位置を座標として定め，線形図データファイルを作成する作業をいう。
（方法）
第573条 線形決定は，地図情報レベル1000以下の地形図上において，設計条件及び現地の状況を勘案して行うものとする。
2 設計条件となる点（以下「条件点」という。）の座標値は，近傍の 4 級基準点以上の基準点に基づき，放射法等により求めるものとする。
3 条件点の観測は，測量地域の地形，地物等の状況を考慮し，次のとおり行うものとする。
一 T S 等を用いる場合は，次表を標準とする。

区 分	水平角観測	鉛直角観測	距離測定
方 法	1 対回	0.5 対回	2 回測定
較差の許容範囲	$40^{\prime \prime}$	-	5 mm

二 キネマティック法，RTK法又はネットワーク型 R T K 法による観測の場合は，2セッ ト行うものとし，使用衛星数及び較差の許容範囲等は，次表を標準とする。

使用衛星数	観測回数	データ取得間隔	許容範囲		備 考
5 衛星 以上	F I X 解を得てから10 エポック以上	$\begin{aligned} & \quad 1 \quad \text { 秒 } \\ & \text { (ただし, キネ } \\ & \text { マティック法は } \\ & 5 \text { 秒以下) } \end{aligned}$	$\begin{aligned} & \Delta N \\ & \Delta E \end{aligned}$	20 mm	ΔN ：水平面の南北成分のセット間較差 ΔE ：水平面の東西成分のセット間較差 ただし，平面直角座標値で比較す ることができる。
摘 要	GLONASS衛星を用いて観測する場合は，使用衛星数は 6 衛星以上とする。ただ し，GPS•準天頂衛星及びGLONASS衛星を，それぞれ2衛星以上を用いるこ と。				

三 前号において 1 セット目の観測終了後，点検のための再初期化を行い 2 セット目の観測 を行うものとする。ただし，1セット目の観測結果を採用値とし，2セット目の観測結果 は点検値とする。
四 キネマティック法，R T K 法又はネットワーク型 R T K 法による点検測量の観測回数は 1 セットとする。
4 ネットワーク型 R T K 法による観測は，間接観測法又は単点観測法を用いる。
5 単点観測法による場合は，作業地域周辺の既知点において単点観測法により，整合を確認 するものとする。なお，整合の確認及び方法は，次のとおりとする。
一 整合の確認は，次のとおり行うものとする。

イ 整合を確認する既知点は，作業地域の周辺を囲むように配置する。
ロ 既知点数は，3点以上を標準とする。
八 既知点での観測は，第3項第二号及び第三号の規定を準用する。
二 既知点成果値と観測値で比較し，許容範囲内で整合しているかを確認する。
二 整合していない場合は，次の方法により整合処理を行うものとする。
イ 水平の整合処理は，座標補正として次により行うものとする。
（1）平面直角座標で行うことを標準とする。
（2）補正手法は適切な方法を採用する。
ロ 高さの整合処理は，標高補正として次により行うものとする。
（1）標高を用いることを標準とする。
（2）補正手法は適切な方法を採用する。
三 座標補正の点検は，水平距離と標高差（標高を補正した場合）について，次のとおり行 うものとする。
イ 単点観測法により座標補正に使用した既知点以外の既知点で観測を行い，座標補正を行った測点の単点観測法による観測値との距離を求める。
ロ イの単点観測法により観測を行う既知点の成果値と，イの座標補正を行った測点の補正後の座標値から距離を求める。
ハ イとロの較差により点検を行う。較差の許容範囲は，次表を標準とする。

点検距離	許容範囲
500 m 以上	点検距離の $1 / 10,000$
500 m 未満	50 mm

6 線形図データファイルは，計算等により求めた主要点及び中心点の座標値を用いて作成す る。

7 点検測量は，条件点間の距離を測定し，座標差から求めた距離との比較により行う。
8 前項において条件点間の距離が直接測定できない場合は，その条件点の座標値の決定に用 いた既知点以外の既知点から別に求めた座標値の較差又はT S の対辺測定機能を用いて条件点間距離を測定し，その較差により点検する。ただし，座標値により点検する場合の点間距離S は，採用値及び点検値のうち短い距離を使用するものとする。
9 第 7 項の較差の許容範囲は，次表を標準とする。

区分	平 地離	山 地	備
30 m 未満	10 mm	15 mm	考
30 m 以上	$\mathrm{S} / 3,000$	$\mathrm{~S} / 2,000$	S点間距離の計算値

10 精度管理の結果は，精度管理表にとりまとめるものとする。

第574条 現地に直接 I P を設置する必要がある場合は，次により行らものとする。
一 線形決定により定められた座標値を持つIPは，近傍の 4 級基準点以上の基準点に基づ き，放射法等により設置するものとする。
二 前号によらない I P は，周囲の状況を勘案して，現地に直接設置するものとする。この場合において，I P の座標値は，近傍の 4 級基準点以上の基準点に基づき放射法等により求めるものとする。ただし，直接視通がとれない場合は節点を設けることができる。
三 I P には，標杭を設置する。
2 I P の観測は，測量地域の地形，地物等の状況を考慮し，次のとおり行うものとする。
一 前項第一号において，TS等を用いる場合は，次表を標準とする。

区 分	水平角観測	鉛直角観測	距離測定
方 法	0.5 対回	0.5 対回	2 回測定
較差の許容範囲	-	-	5 mm

二 前項第二号において，T S 等による場合は，前条第 3 項第一号の規定を準用する。
三 キネマティク法，RTK法又はネットワーク型RTK法による場合は，前条第3項第二号から第四号，第4項及び第5項の規定を準用する。
3 点検測量は，I P の点間距離を測定し，座標差から求めた距離との比較により行う。ただ し，I P の点間距離が直接測定できない場合は，前条第8項の規定を準用する。
4 前項の較差の許容範囲は，前条第 9 項の規定を準用する。
5 精度管理の結果は，精度管理表にとりまとめるものとする。

第4節 中心線測量

（要旨）
第575条 「中心線測量」とは，主要点及び中心点を現地に設置し，線形地形図データファイルを作成する作業をいう。
（方法）
第576条 主要点の設置は，近傍の4級基準点以上の基準点等に基づき，放射法等により行うものと する。ただし，直接視通がとれない場合は節点を設けることができる。
2 中心点の設置は，近傍の 4 級基準点以上の基準点，I P及び主要点に基づき，放射法等に より行うものとする。ただし，直接視通がとれない場合は節点を設けることができる。
3 中心点を設置する間隔は，次表を標準とする。

種		別
等 道 路	計画調査	100 m 又は 50 m
	実施設計	20 m
河川及び水路	計画調查	100 m 又は 50 m
	実施設計	20 m 又は 50 m
海 岸	実施設計	20 m 又は 50 m

4 中心点の観測は，測量地域の地形，地物等の状況を考慮し，次のとおり行うものとする。
一 T S 等を用いる場合は，第574条第2項第一号の規定を準用する。
二 キネマティック法，R T K 法又はネットワーク型 R T K 法による場合は，第573条第3項第二号から第四号，第4項及び第5項の規定を準用する。
5 線形地形図データファイルは，地形図データに主要点及び中心点の座標値を用いて作成す る。

6 点検測量は，隣接する中心点等の点間距離を測定し，座標差から求めた距離との比較によ り行う。
7 前項において中心点間等の距離が，直接測定ができない場合は，第573条第8項の規定を準用する。

8 第6項の較差の許容範囲は，次表を標準とする。

| 区分 | 平 地離 | 山 地 | 備 |
| :---: | :---: | :---: | :---: | 考

9 計画機関が指示する縦断変化点の設置は，中心点の設置を準用する。
10 精度管理の結果は，精度管理表にとりまとめるものとする。

（標杭の設置）

第577条 主要点には役杭を，中心点には中心杭を設置する。
2 役杭には，必要に応じて引照点杭又は保護杭を設置する。
3 役杭及び中心杭には，識別のための名称等を記入する。
4 引照点杭を設置した場合は，引照点図を作成する。

第 5 節 仮 B M 設置測量

（要旨）
第578条 「仮 B M 設置測量」とは，縦断測量及び横断測量に必要な水準点（以下「仮 B M」とい う。）を現地に設置し，標高を定める作業をいう。ただし，河川等で距離標がある場合は， これを仮BMとして使用することができる。
（方法）
第579条 仮 B M 設置測量は，平地においては 3 級水準測量により行い，山地においては 4 級水準測量により行うものとする。
2 仮 B Mを設置する間隔は，0．5キロメートルを標準とする。
3 精度管理の結果は，精度管理表にとりまとめるものとする。

（標杭の設置）

第580条 仮 B Mには，標杭を設置するものとする。ただし，堅固な構造物等を利用するときは，こ の限りでない。

第6節 縦断測量
（要旨）
第581条 「縦断測量」とは，中心杭等の標高を定め，縦断面図データファイルを作成する作業をい う。
（方法）
第582条 縦断測量は，中心杭高及び中心点並びに中心線上の地形変化点（以下「繍断変化点」とい う。）の地盤高及び中心線上の主要な構造物の標高を仮BM又はこれと同等以上の水準点に基づき，平地においては 4 級水準測量，山地においては簡易水準測量により行うものとす る。
2 前項の規定にかかわらず，仮BM又はターニングポイントの中間にある点の観測は，中間視によるものとする。
3 縦断変化点には，標杭を設置する。
4 観測の基準とする点は，仮 B M とし，観測の路線は，仮BMから出発し，他の仮BMに結合する。
5 観測は，往路においては中心杭高，中心杭•縦断変化点杭の地盤高及び中心線上の主要な構造物の標高について行い，復路においては中心杭高について行らものとする。
6 縦断変化点及び主要な構造物の位置は，中心点からの距離を測定して定める。
7 地形，地物等の状況により，直接水準測量に代えて間接水準測量によることができる。
8 間接水準測量は，T S を用いた単観測昇降式による往復観測とする。なお，その閉合差の許容範囲は，第68条第1項第二号に規定する表に定める簡易水準測量の閉合差を準用する。
9 縦断面図データファイルは，縱断測量の結果に基づいて作成する。
10 縦断面図データファイルを図紙に出力する場合は，縦断面図の距離を表す横の縮尺（以下「横の縮尺」という。）は線形地形図の縮尺と同一とし，高さを表す縦の縮尺（以下「縦 の縮尺」という。）は，線形地形図の縮尺の 5 倍から 10 倍までを標準とする。
11 精度管理の結果は，精度管理表にとりまとめるものとする。

第 7 節 横断測量

（要旨）
第583条 「横断測量」とは，中心杭等を基準にして地形の変化点等の距離及び地盤高を定め，横断面図データファイルを作成する作業をいう。
（方法）
第584条 横断測量は，中心杭等を基準にして，中心点における中心線の接線に対して直角方向の線上にある地形の変化点及び地物について，中心点からの距離及び地盤高を測定するものとす る。
2 横断方向には，原則として，見通杭を設置するものとする。
3 測量の基準とする点は，中心杭及び計画機関が指示する綛断変化点杭とする。
4 横断測量における地盤高の測定は，地形，地物等の状況により直接水準測量又は間接水準

測量により行らものとする。
5 間接水準測量は，測量地域の地形，地物等の状況を考慮し，次のとおり行うものとする。
一 T S 等を用いる場合は，単観測昇降式とする。
二 キネマティック法，RTK法又はネットワーク型 R T K 法による観測の場合は，1セッ ト行らものとし，使用衛星数及び較差の許容範囲等は，次表を標準とする。

使用衛星数	観測回数	データ取得間隔
5 衛星以上	FI X解を得てから 10エポック以上	1 秒 （ただし，キネマティック法は5秒以下）
摘 要	GLONASS衛星を用いて観測する場合は，使用衛星数は 6 衛星以上とす る。ただし，GPS•準天頂衛星及びGLONASS衛星を，それぞれ 2 衛星以上を用いること。	

三 ネットワーク型 R T K 法による場合は，第573条第4項及び第5項の規定を準用する。
四 初期化を行う観測点では，次の方法で観測値の点検を行い，次の観測点に移動するもの とする。
イ 点検のために 1 セットの観測を行うこと。ただし，観測は観測位置が明確な標杭等で行うものとする。
ロ 1セットの観測終了後に再初期化を行い，2セット目の観測を行うものとする。
八 再初期化した 2 セット目の観測値を採用値として観測を継続するものとする。
二 2 セットの観測による点検に代えて，既知点で 1 セットの観測により点検することが できる。
五 許容範囲等は，次表を標準とする。

項 目		許容範囲	備 考
セット間較差	$\begin{aligned} & \Delta N \\ & \Delta E \end{aligned}$	20mm	$\Delta N:$ 水平面の南北成分のセット間較差 $\Delta E:$ 水平面の東西成分のセット間較差
	ΔU	30 mm	$\Delta U:$ 水平面からの高さ成分のセット間較差 ただし，平面直角座標値で比較することができ る。

6 キネマティック法，R T K 法又はネットワーク型 R T K 法による観測において，横断方向 の見通し見通し杭の設置は行わないものとし，横断方向を直接決定することができる。ただ し，点検測量のための末端見通杭を設置する。
7 水部における横断測量は，前項の規定にかかわらず，第3章第7節の規定を準用する。
8 横断面図データファイルは，横断測量の結果に基づき作成する。
9 点検測量は，点検測量率によって選択された横断面について，再度横断測量を実施し，そ の結果に基づいて描画した横断面図を，先に描画した横断面図の中心点及び末端見通杭を固定して重ね合わせ，横断形状を比較することにより行うものとする。また，中心杭と末端見通杭の距離及び標高の測定値と点検測量値との比較を行らものとし，較差の許容範囲は，次

表を標準とする。

区 分	平 地	山 地	備
距 離	$\mathrm{L} / 500$	$\mathrm{~L} / 300$	L は中心杭等と末端見通杭の 測定距離（m単位）
標 高	$20 \mathrm{~mm}+50 \mathrm{~mm} \sqrt{\mathrm{~L} / 100}$	$50 \mathrm{~mm}+150 \mathrm{~mm} \sqrt{\mathrm{~L} / 100}$	

10 横断面図データファイルを図紙に出力する場合は，横断面図の縮尺は縦断面図の縦の縮尺と同一のものを標準とする。
11 精度管理の結果は，精度管理表にとりまとめるものとする。

第8節 詳細測量

（要旨）
第585条 「詳細測量」とは，主要な構造物の設計に必要な詳細平面図データファイル，縱断面図デ ータファイル及び横断面図データファイルを作成する作業をいう。

（方法）

第586条 詳細平面図データファイルの作成は，第3編第2章の規定を準用する。
2 縦断面図データファイルの作成は，縦断測量により，横断面図データファイルの作成は，横断測量により行うものとする。
3 横断測量の方法は，前節の規定を準用し，観測は平地においては 4 級水準測量，山地にお いては簡易水準測量又は前節の間接水準測量に準じて行うものとする。
4 詳細平面図データの地図情報レベルは250を標準とする。
5 詳細平面図データファイルを図紙に出力する場合は，縦断面図の横の縮尺は詳細平面図の縮尺と同一とし，縦の縮尺は100分の1を標準とする。また，横断面図の縮尺は縦断面図の縦 の縮尺に合わせることを標準とする。
6 精度管理の結果は，精度管理表にとりまとめるものとする。

第 9 節 用地幅杭設置測量

（要旨）
第587条 「用地幅杭設置測量」とは，取得等に係る用地の範囲を示すため所定の位置に用地幅杭を設置する作業をいう。
（方法）
第588条 用地幅杭設置測量は，中心点等から中心線に対して直角方向の用地幅杭点座標値を計算し， それに基づいて，近傍の 4 級基準点以上の基準点，主要点，中心点等から放射法等により用地幅杭を設置して行らものとする。設置した標杭には，測点番号，中心杭等からの距離等を表示する。
2 計画機関の指示により，前項に規定する以外の位置に用地幅杭点を設置する場合は，その点の座標値を計算し，放射法等により行らものとする。

3 用地幅杭設置測量の観測は，測量地域の地形，地物等の状況を考慮し，次のとおり行うも のとする。

一 T S 等を用いる場合は，第574条第2項第一号の規定を準用する。
二 キネマティック法，R T K 法又はネットワーク型 R T K 法による場合は，第 573 条第 3 項第二号から第四号，第4項及び第5項の規定を準用する。

4 用地幅杭点間の距離は，用地幅杭点座標値に基づき，計算により求める。
5 用地幅杭点及び中心点の位置を示す図を必要とする場合には，杭打図として作成する。

（用地幅杭点間測量）

第589条 用地幅杭点間測量は，T S 等により隣接する用地幅杭点間全辺について距離を現地で測定 するとともに，前条の規定に基づいて計算した用地幅杭点間距離と比較を行うものとする。 なお，較差の許容範囲は，次表を標準とする。

	平 地	山 地	備 考
20 m 未満	10 mm	20 mm	Sは点間距離の計算値
$20 \mathrm{m以上}$	S／2， 000	S／1， 000	

2 前項において用地幅杭間の距離が直接測定できない場合は，第573条第8項の規定を準用す る。
3 用地幅杭設置測量の結果は，精度管理表にとりまとめるものとする。

第10節 品質評価
（品質評価）
第590条 路線測量成果の品質評価は，第43条の規定を準用する。

第11節 成果等の整理
（メタデータの作成）
第591条 路線測量成果のメタデータの作成は，第44条の規定を準用する。
（成果等）
第592条 路線測量の成果等は，次表を標準とする。

成果等の整理	該当する測量の種類								
	$\begin{aligned} & \text { 線 形 } \\ & \text { 定 } \end{aligned}$	条件点 の観測	$\begin{aligned} & \text { IP の } \\ & \text { 設 } \\ & \text { 置 } \end{aligned}$	中心線測 量	$\begin{aligned} & \text { 作BM } \\ & \text { 没置 } \\ & \text { 則 } \end{aligned}$	縦断 測量	横 断測 量	$\begin{aligned} & \text { 詳 細 } \\ & \text { 測 量 } \end{aligned}$	$\begin{aligned} & \text { 用地幅湢設 } \\ & \text { 測量 } \end{aligned}$
観測手簿		\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc	
計算簿	\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc
成果表		\bigcirc			\bigcirc	\bigcirc		\bigcirc	
$\begin{array}{\|l} \hline \text { 線形図データ } \\ \text { ファイル } \end{array}$	\bigcirc								
線形地形図 データファイル				\bigcirc					
縦横断面図 データファイル						\bigcirc	\bigcirc	\bigcirc	
詳細平面図 データファイル								\bigcirc	
引照点図				\bigcirc					
精度管理表		\bigcirc							
品質評価表					\bigcirc	\bigcirc		\bigcirc	\bigcirc
メタデータ					\bigcirc	\bigcirc		\bigcirc	\bigcirc

2 前項の表に定めるもののほか，別に作成した資料がある場合には，その他の資料として整理するものとする。また，観測手簿と成果表を併用する様式を使用することができる。

第4章 河川測量
第1節 要旨
（要旨）
第593条「河川測量」とは，河川，海岸等の調査及び河川の維持管理等に用いる測量をいう。
2 河川，水路等の新設及び改修に係る測量は，前章の規定を準用する。

（河川測量の細分）

第594条 河川測量は，次に掲げる測量等に細分するものとする。
一 作業計画
二 距離標設置測量
三 水準基標測量
四 定期縦断測量
五 定期横断測量
六 深浅測量
七 法線測量
八 海浜測量及び汀線測量

第2節 作業計画

（要旨）
第595条 作業計画は，第10条の規定によるほか，測量を実施する河川，海岸等の状況を把握し，河川測量の細分ごとに作成するものとする。

第3節 距離標設置測量

（要旨）
第596条「距離標設置測量」とは，河心線の接線に対して直角方向の両岸の堤防法肩又は法面等に距離標を設置する作業をいう。
（方法）
第597条 距離標は，あらかじめ地形図上で位置を選定し，その座標値に基づいて，近傍の 3 級基準点等から放射法等により設置するものとする。
2 距離標設置間隔は，河川の河口又は幹川への合流点に設けた起点から，河心に沿って200メ ートルを標準とする。
3 距離標設置測量は，次のとおり行うものとする。
一 T S 等を用いる放射法の場合は，第574条第2項第一号の規定を準用して行うことができ る。ただし，近傍に既知点がない場合は，3級基準点等を設置することができる。
二 キネマティック法，RTK法又はネットワーク型RTK法による場合は，第573条第3項第二号から第四号，第4項及び第5項の規定を準用する。
4 単点観測法において，位置情報サービス事業者で算出された任意地点の補正データを使用 する場合，その地点から距離標までの距離を3キロメートル以内とする。
5 精度管理の結果は，精度管理表にとりまとめるものとする。
6 距離標の位置を示すため，点の記を作成する。

第4節 水準基標測量

（要旨）
第598条 「水準基標測量」とは，定期縦断測量の基準となる水準基標の標高を定める作業をいう。 （方法）
第599条 水準基標測量は，2級水準測量により行うものとする。
2 水準基標は，水位標に近接した位置に設置するものとし，設置間隔は，5キロメートルか ら20キロメートルまでを標準とする。
3 精度管理の結果は，精度管理表にとりまとめるものとする。
4 水準基標の位置を示すため，点の記を作成する。

第5節 定期縦断測量

（要旨）
第600条 「定期縦断測量」とは，定的的に距離標等の縦断測量を実施して縦断面図データファイル を作成する作業をいう。
（方法）
第601条 定期縦断測量は，左右両岸の距離標の標高並びに堤防の変化点の地盤及び主要な構造物に ついて，距離標からの距離及び標高を測定するものとする。
2 定期縦断測量は，原則として，観測の基準とする点は水準基標とし，観測の路線は，水準基標から出発し，他の水準基標に結合するものとする。
3 定期縦断測量は，平地においては 3 級水準測量により行い，山地においては 4 級水準測量 により行らものとする。ただし，地形，地物等の状況によっては，4級水準測量に代えて間接水準測量により行うことができるものとし，その場合は第582条第8項の規定を準用する。
4 縦断面図データファイルは，定期縦断測量の結果に基づいて作成する。
5 縦断面図データファイルには，測点，単距離，追加距離，計画河床高，計画高水敷高，計画高水位，計画堤防高，最低河床高，左岸堤防高，右岸堤防高，水準基標，水位標，各種構造物等の名称，位置，標高等のデータを格納する。
6 縦断面図データを図紙に出力する場合は，横の縮尺は 1,000 分の 1 から 100,000 分の 1 まで，縦の縮尺は 100 分の 1 から 200 分の 1 までを標準とする。
7 精度管理の結果は，精度管理表にとりまとめるものとする。

第6節 定期横断測量

（要旨）
第602条 「定期横断測量」とは，定期的に左右距離標の視通線上の横断測量を実施して横断面図デ ータファイルを作成する作業をいう。
（方法）
第603条 定期横断測量は，左右距離標の視通線上の地形の変化点等について，距離標からの距離及 び標高を測定するものとする。
2 定期横断測量は，水際杭を境にして，陸部と水部に分け，陸部については第3章第7節の規定を準用し，水部については次節の規定を準用する。
3 陸部の測量範囲は，次表を標準とする。

測 量 名	測 量 範 囲
定期横断測量	堤内 $20 \sim 50 \mathrm{~m}$

4 横断面図データファイルは，定期横断測量の結果に基づいて作成する。
5 横断面図データファイルは，距離標及び水際杭の位置データを格納する。
6 横断面図データを図紙に出力する場合は，横の縮尺は 100 分の 1 から 1,000 分の 1 まで，縦 の縮尺は100分の 1 から 200 分の 1 までを標準とする。
7 精度管理の結果は，精度管理表にとりまとめるものとする。

第7節 深浅測量

（要旨）

第604条 「深浅測量」とは，河川，貯水池，湖沼又は海岸において，水底部の地形を明らかにする ため，水深，測深位置又は船位，水位又は潮位を測定し，横断面図データファイルを作成す る作業をいう。
（方法）
第605条 水深の測定は，音響測深機を用いて行らものとする。ただし，水深が浅い場合は，ロッド又はレッドを用い直接測定により行うものとする。
2 測深位置又は船位の測定は，ワイヤーロープ，T S 等又はGNSS測量機のらちいずれか を用いて行うものとし，測点間隔は次表を標準とする。

使 用 機 器	測 点 間 隔	備
ワイヤーロープ 考		
T S等	5 m	
G S S S測量機	$10 \mathrm{~m} \sim 100 \mathrm{~m}$	1 m 間隔の等深線図が描ける程度

3 ワイヤーロープを用いる測定は，測線にワイヤーロープを設置し水深を測定する。
4 T S 等を用いる観測は，T S 等を用い測量船を測線上に誘導し水深を測定する。
5 R T K 法又はネットワーク型 R T K 法による観測は，次表を標準とする。

使用衛星数	観 測 回 数	データ取得間隔
5 衛星以上	F I X 解を得てから1エポック以上	1 秒
摘	G L O 要	G A S S 衛星を用いて観測する場合は，使用衛星数は衛星以上と する。ただし，G P S •準天頂衛星及びG L ON A S S 衛星を，それぞれ 2 衛星以上を用いること。

6 音響測深機による測定では，その機器に定められた深度校正を毎日 1 回以上行うものとし，深度校正を行ら場合は当日の測深水域又はその付近で行うものとする。
7 水深測定は，指定されたピッチ位置において 2 回行い，その平均値を採用する。ただし，河口部等が広大な水域等において測定を 2 回行うことが困難な場合はこの限りではない。
8 アナログ測深記録では，一定時間毎に記録紙に測定マークを入れ，デジタル測深記録では，時刻をGNSSの観測時刻と合わせ測深位置を決定する。
9 水位又は潮位の測定は，水位標，検潮所若しくは仮水位標による観測又は直接測定により行らものとする。
10 横断面図データファイルは，深浅測量の結果に基づいて作成する。
11 横断面図データファイルには，水際杭の位置データを格納する。
12 横断面図データを図紙に出力する場合は，横の縮尺は 100 分の 1 から 10,000 分の 1 まで，縦の縮尺は100分の 1 から 200 分の 1 までを標準とする。

第 8 節 法線測量
（要旨）

第606条 「法線測量」とは，計画資料に基づき，河川又は海岸において，築造物の新設又は改修等 を行う場合に現地の法線上に杭を設置し線形図データファイルを作成する作業をいう。
（方法）
第607条 法線測量は，第3章第4節の規定を準用する。
2 精度管理の結果は，精度管理表にとりまとめるものとする。

第9節 海浜測量及び汀線測量
（要旨）
第608条 「海浜測量」とは，前浜と後浜（以下「海浜」という。）を含む範囲の等高•等深線図デ ータファイルを作成する作業をいう。
2 「汀線測量」とは，最低水面と海浜との交線（以下「汀線」という。）を定め，汀線図デー タファイルを作成する作業をいう。
（方法）
第609条 海浜測量は，海岸線に沿つて陸部に基準線を設けて，適切な間隔に測点を設置し，測点ご とに基準線に対し直角の方向に横断測量を実施するものとする。なお，後浜の地形が複雑な場合は，後浜について第3編地形測量及び写真測量により行うことができる。
2 基準線の測量は，第3章第4節の規定を準用する。
3 最低水面は，原則として海上保安庁が公示する最低水面の高さから求める。
4 等高•等深線地図データファイルは，横断測量等の結果に基づいて作成する。
5 汀線測量は，基準とする杭から距離測定及び標高測定により汀線の位置を定めて行うもの とする。
6 汀線図データファイルは，前項の結果に基づいて作成する。ただし，汀線を等高•等深線図データファイルに格納した場合は，この限りでない。
7 精度管理の結果は，精度管理表にとりまとめるものとする。

第10節 品質評価
（品質評価）
第610条 河川測量成果の品質評価は，第43条の規定を準用する。

第11節 成果等の整理
（メタデータの作成）
第611条 河川測量成果のメタデータの作成は，第44条の規定を準用する。
（成 果 等）
第612条 河川測量の成果等は，次表を標準とする。

成果等の整理	該当する測量の種類							
	$\begin{aligned} & \text { 距離標 } \\ & \text { 没 置 } \\ & \text { 測 量 } \end{aligned}$	$\begin{aligned} & \text { 水準 } \\ & \text { 基 標 } \\ & \text { 測 量 } \end{aligned}$	$\begin{aligned} & \text { 定 期 } \\ & \text { 縦 断 } \\ & \text { 則 量 } \end{aligned}$	$\begin{aligned} & \text { 定 期 } \\ & \text { 横 } ⿰ ⿺ 𠃊 ⿻ 丷 木 斤 斤 斤 \\ & \text { 測 量 } \end{aligned}$	深 浅測 量	法 線測 量	海 浜測 量	汀 線測 量
観測手簿	\bigcirc							
記録紙					\bigcirc			
計算簿	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc
成果表	\bigcirc	\bigcirc	\bigcirc					
縦断面図データファイル			\bigcirc					
横断面図データファイル				\bigcirc	\bigcirc			
線形図データファイル						\bigcirc		
等高•等深線図 データファイル							\bigcirc	
汀線図データファイル								\bigcirc
点の記	\bigcirc	\bigcirc						
精度管理表	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	
品質評価表	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc
メタデータ	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc

2 前項の表に定めるもののほか，別に作成した資料がある場合には，その他の資料として整理するものとする。また，観測手簿と成果表を併用する様式を使用することができる。

第5章 用地測量

第1節 要旨
（要旨）
第613条 「用地測量」とは，土地及び境界等について調査し，用地取得等に必要な資料及び図面を作成する作業をいう。
（用地測量の細分）
第614条 用地測量は，次に掲げる測量等に細分するものとする。
一 作業計画
二 資料調查
三 復元測量
四 境界確認
五 境界測量
六 境界点間測量
七 面積計算
八 用地実測図データファイルの作成

九 用地平面図データファイルの作成

第2節 作業計画

（要旨）
第615条 用地測量の作業計画は，第10条の規定によるほか，測量を実施する区域の地形，土地の利用状況，植生の状況等を把握し，用地測量の細分ごとに作成するものとする。

第3節 資料調査
（要旨）
第616条 「資料調査」とは，土地の取得等に係る土地について，用地測量に必要な諸資料を整理及 び作成する作業をいう。
（方法）
第617条 資料調查は，作業計画に基づき，法務局等に備える地図，地図に準ずる図面，地積測量図等公共団体に備える地図等（以下「公図等」という。）の転写並びに土地及び建物の登記記録の調査及び権利者確認調査に区分して行うものとする。

（公図等の転写）

第618条 公図等の転写は，管轄法務局等に備える公図等に基づき公図等転写図を作成する。
2 調査する区域が広範な場合は，公図等転写連続図を作成する。
（土地の登記記録の調査）
第619条 土地の登記記録の調査は，管轄法務局等に備えられた土地の登記記録について登記事項証明書等に基づき，土地調査表を作成し行うものとする。
（建物の登記記録の調査）
第620条 建物の登記記録の調査は，管轄法務局等に備えられた，建物の登記記録について登記事項証明書等に基づき，建物の登記記録等調査表を作成し行うものとする。
（権利者確認調查）
第621条 権利者確認調査は，計画機関から貸与された資料等を基に権利者調査表を作成し行うもの とする。

第 4 節 復元測量
（要旨）
第622条「復元測量」とは，境界確認に先立ち，地積測量図等に基づき境界杭の位置を確認し，亡失等がある場合は復元するべき位置に仮杭（以下「復元杭」という。）を設置する作業をいう。
（方法）

第623条 収集した地積測量図等の精度，測量年度等を確認し，その成果に基づき境界杭を調査し，亡失等の異常の有無を確認するものとする。
2 復元測量は，計画機関が境界確認に必要があると認める境界杭について行うものとする。
3 現地作業の着手前には，関倸権利者に立ち入りについての日程等を通知する。
4 境界杭に亡失，異常等がある場合は，復元杭を設置する。
5 前項の規定により復元杭の設置等を行ら場合は，関係権利者への事前説明を実施するもの とする。この場合，原則として関係権利者による立会いは行なわないものとする。
6 復元の方法は，直接復元法等により行うものとする。
7 収集した資料に基づき復元した現地と相違する場合は，復元杭を設置せず原因を調查し計画機関に報告し適切な措置を講ずるものとする。

第5節 境界確認

（要旨）
第624条「境界確認」とは，現地において一筆ごとに土地の境界（以下「境界点」という。）を確認 する作業をいう。
（方法）
第625条 境界確認は，前節の復元測量の結果，公図等転写図，土地調査表等に基づき，現地におい て関係権利者立会いの上，境界点を確認し，標杭を設置することにより行うものとする。
2 境界確認を行ら範囲は，次のとおりとする。
一 一筆を範囲とする画地
二 一筆の土地であっても，所有権以外の権利が設定されている場合は，その権利ごとの画地
三 一筆の土地であっても，その一部が異なった現況地目となっている場合は，現況の地目 ごとの画地
四 一画地にあって，土地に付属するあぜ，溝，その他これらに類するものが存するときは，一画地に含むものとする。ただし，一部ががけ地等で通常の用途に供することができない と認められるときは，その部分を区分した画地
3 境界確認に当たっては，各関係権利者に対して，立会いを求める日を定め，事前に通知す る。
4 境界点に，既設の標識が設置されている場合は，関係権利者の同意を得てそれを境界点と することができる。
5 境界確認が完了したときは，土地境界碓認書を作成し，関係権利者全員に確認したことの署名押印を求める。
6 復元杭の位置について地権者の同意が得られた場合は，復元杭の取扱いは計画機関の指示 によるものとする。

第 6 節 境界測量
（要旨）
第626条 「境界測量」とは，現地において境界点を測定し，その座標値を求める作業をいう。
（方法）
第627条 境界測量は，近傍の4級基準点以上の基準点に基づき，放射法等により行うものとする。 ただし，やむを得ない場合は，補助基準点を設置し，それに基づいて行うことができる。 2 前項の観測は，測量地域の地形，地物の状況等を考慮し，次のとおり行らものとする。

一 TS等を用いる観測は，次表を標準とする。

区 分		水平角観測	鉛直角観測
方 距離測定			
較差の許容範囲	0.5 対回	0.5 対回	2 回測定

二 キネマティック法，RTK法又はネットワーク型 R T K 法による場合は，第573条第3項第二号，第4項及び第5項の規定を準用する。

三 前号において，1セット目の観測終了後，再初期化を行い 2 セット目の観測を行う。な お，境界点の座標値は，2セットの観測から求めた平均値とする。
3 補助基準点は，基準点から辺長100メートル以内，節点は1点以内の開放多角測量により設置するものとする。なお，観測の区分等は，次表を標準とする。

区 分	水平角観測		鉛直角観測	距離測定
方 法	2 対回 $\left(0^{\circ}, 90^{\circ}\right)$	1 対回	2 回測定	
較差の許容範囲	倍 角 差	$60^{\prime \prime}$	$60^{\prime \prime}$	5 mm
	観 測 差	$40^{\prime \prime}$		

4 第2項の結果に基づき，計算により境界点の座標値，境界点間の距離及び方向角を求める ものとする。 5 mm
5 計算を，計算機により行う場合は，次項に規定する位以上の計算精度を確保し，座標値及 び方向角は，次項に規定する位の次の位において四捨五入するものとし，距離及び面積は，次項に規定する位の次の位以下を切り捨てるものとする。
6 座標値等の計算における結果の表示単位等は，次表を標準とする。

区分	方向角	距 離	座標値	面 積
単位	秒	m	m	m^{2}
位	1	0.001	0.001	0.000001

7 ネットワーク型 R T K 法による場合は，既知点となった電子基準点の名称等を記録する。

（用地境界仮杭設置）

第628条 「用地境界仮杭設置」とは，用地幅杭の位置以外の境界線上等に，用地境界杭を設置する必要がある場合に，用地境界仮杭を設置する作業をいう。
（方法）
第629条 用地境界仮杭設置は，交点計算等で求めた用地境界仮杭の座標値に基づいて， 4 級基準点以上の基準点からの放射法又は用地幅杭線及び境界線の交点を視通法により行うものとする。 2 用地境界仮杭の観測は，第627条第2項の規定を準用する。
（用地境界杭設置）
第630条 「用地境界杭設置」とは，用地幅杭又は用地境界仮杭と同位置に用地境界杭を置き換える作業をいう。

第7節 境界点間測量

（要旨）
第631条 「境界点間測量」とは，境界測量等において隣接する境界点間の距離を，TS 等を用いて測定し精度を確認する作業をいう。
（方法）
第632条 境界点間測量は，次の測量を終了した時点で行うものとする。
一 境界測量
二 用地境界仮杭設置
三 用地境界杭設置
2 境界点間測量は，隣接する境界点間又は境界点と用地境界杭を設置した点（以下「用地境界点」という。）との距離を全辺について現地で測定し，第627条及び第629条の規定で計算 した距離と比較を行らものとする。なお，較差の許容範囲は，次表を標準とする。

距離	区分	平	山地
	山地	備	考
20 m 未満	10 mm	20 mm	Sは点間距離の計算値
20 m 以上	$\mathrm{S} / 2,000$	$\mathrm{~S} / 1,000$	

3 境界点間の距離が直接測定できない場合は，第573条第8項の規定を準用するものとし，較差の許容範囲は，前項の表による。
4 境界点間測量の結果は，精度管理表にとりまとめるものとする。

第8節 面積計算
（要旨）
第633条 「面積計算」とは，境界測量の成果に基づき，各筆等の取得用地及び残地の面積を算出し面積計算書を作成する作業をいう。
（方法）
第634条 面積計算は，原則として座標法により行うものとする。

第 9 節 用地実測図データファイルの作成
（要旨）
第635条 「用地実測図データファイルの作成」とは，第1節から前節までの結果に基づき，用地実測図データを作成する作業をいう。
（作成）
第636条 用地実測図データファイルは，境界点の座標値等を用いて作成する。
2 用地実測図データは，次の項目を標準とする。
一 基準点及び官民，所有権，借地，地上権等の境界点の座標値，点名，標杭の種類及び境界線

二 面積計算表

三 各筆の地番，不動産番号，地目，土地所有者氏名及び借地人等氏名
四 境界辺長
五 隣接地の地番，不動産番号及び境界の方向線
六 借地境界
七 用地取得線
八 図面の名称，配置，方位，座標線，地図情報レベル，座標系，測量年月日，計画機関名称，作業機関名称及び土地の測量に従事した者の記名
九 市区町村の名称，大字，字の名称又は町，丁の名称及び境界線
十 用地幅杭点及び用地境界点の位置
十一 現況地目
十二 画地及び残地の面積
十三 その他計画機関に指示された事項
3 用地実測図データの地図情報レベルは，250を標準とする。
4 分類コードは，付録 7 の公共測量標準図式数値地形図データ取得分類基準を標準とする。
5 用地実測図データを図紙に出力する場合の図紙の仕様は，厚さ 0.075 ミリメートルとし，素材はポリエステルフィルム又はこれと同等以上のものとする。
6 精度管理の結果は，精度管理表にとりまとめるものとする。

第10節 用地平面図データファイルの作成
（要旨）
第637条 「用地平面図データファイルの作成」とは，第1節から前節までの結果に基づき，用地平面図データを作成する作業をいう。
（作成）
第638条 用地平面図データファイルは，用地実測図データの境界点の座標値等の必要項目を抽出す るとともに，現地において建物等の主要地物を測定し作成する。
2 用地平面図データは，次の項目を標準とする。
一 基準点並びに官民，所有権，借地，地上権等の境界点及び境界線

二 各筆の地番，不動産番号，地目，土地所有者及び借地人等氏名
三 用地幅杭点及び用地境界点の位置並びに用地取得線
四 行政界，市区町村の名称及び大字，字の名称又は町，丁の名称
五 現況地目
六 建物等及び工作物
七 道路名及び水路名
八 図面の名称，配置，方位，座標線，地図情報レベル及び座標系
九 測量年月日，計画機関名称及び作業機関名称
十 その他計画機関に指示された事項
3 用地平面図データの地図情報レベルは，250を標準とする。
4 分類コードは，付録 7 の公共測量標準図式数値地形図データ取得分類基準を標準とする。
5 用地平面図データを図紙に出力する場合の図紙の仕様は，厚さ 0.075 ミリメートルとし，素材はポリエステルフィルム又はこれと同等以上のものとする。

6 精度管理の結果は，精度管理表にとりまとめるものとする。

第11節 品質評価
（品質評価）
第639条 用地測量成果の品質評価は，第43条の規定を準用する。

第12節 成果等の整理
（メタデータの作成）
第640条 用地測量成果のメタデータの作成は，第44条の規定を準用する。
（成果等）
第641条 用地測量の成果等は，次表を標準とする。

	該当する測量の種類						
$\begin{array}{ccc}\text { 成 } & \text { 果 } & \text { 等 } \\ \text { の } & \text { 整 } & \text { 理 }\end{array}$	$\begin{array}{ll} \text { 資 } & \text { 料 } \\ \text { 調 } & \text { 査 } \end{array}$	$\begin{array}{\|ll} \hline \text { 境 } & \text { 界 } \\ \text { 確 } & \text { 認 } \end{array}$	$\begin{array}{ll} \text { 境 } & \text { 界 } \\ \text { 測 } & \text { 量 } \end{array}$	境界点間測量	$\begin{array}{ll} \text { 面 } & \text { 積 } \\ \text { 計 } & \text { 算 } \end{array}$	用地実測図 \qquad ファイルの作 成	用地平面図データ ファイル の作成
公図等転写図	\bigcirc						
公図等転写連続図	\bigcirc						
土地調査表	\bigcirc						
建物の登記記録調査表	\bigcirc						
権利者調査表	\bigcirc						
土地境界碓認書		\bigcirc					
観測手簿			\bigcirc	\bigcirc			
測量計算簿等			\bigcirc				
用地実測図データファイル						\bigcirc	
用地平面図データファイル							\bigcirc
面積計算書					\bigcirc		
精度管理表				\bigcirc		\bigcirc	\bigcirc
品質評価表						\bigcirc	\bigcirc
メタデータ						\bigcirc	\bigcirc

2 前項の表に定めるもののほか，別に作成した資料がある場合には，その他の資料として整理するものとする。

第6章 その他の応用測量
第1節 要旨
（要旨）
第642条 「その他の応用測量」とは，第2章から前章までの適用を受けない主題図データファイル を作成する作業をいう。

2 「主題図データファイル」とは，地域に分布する自然及び人文現象を，目的に応じた規則 により分類処理し，必要に応じて現地調査を行い，その結果をまとめて表示したデータをい う。
3 主題図は，土地利用図，地質図，植生分類図，湖沼図，ハザードマップ，浸水想定区域図等をいい，原則として既成の基図データを活用して作成する。

第2節 作業計画

（作業計画）

第643条 作業計画は，第10条の規定によるほか，主題図の目的に応じて作成する。

第3節 作業方法

（作業方法）

第644条 その他の応用測量の作業方法は，原則として第3編の規定を準用して行うものとする。

第 4 節 作業内容

（作業内容）
第645条 主題図データファイルの作成は，その目的に応じて実施するものとし，次の工程を標準と する。

一 基図データ，各種地図データ，空中写真，航空レーザ計測データ属性情報及びその他必要な資料の収集

二 計測基図の作成及びデータ化
三 構造化及び属性データの付与
四 主題図データファイル作成
2 基図データは，現況を適切に現したものを優先して使用するものとする。
3 収集した各種資料の使用にあたつては，精度，作成年等を確認して使用するものとする。
4 計測基図は，作成時点で点検を行う。

第5節 品質評価
（品質評価）
第646条 主題図データファイルの品質評価は，第43条の規定を準用する。

第6節 成果等の整理
（メタデータの作成）
第647条 主題図データファイルのメタデータの作成は，第44条の規定を準用する。
（成果等）
第648条 その他の応用測量の成果等は，次のとおりとする。
—主題図データファイル
二 精度管理表
三 品質評価表
四 メタデータ
五 その他の資料

附則
この規程は，令和3年8月30日から適用する。

